Login

Wolves
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
GM : smartty18 | Morale : 40 | Team Overall : 57
Next Games #6 vs Monsters
Your browser screen resolution is too small for this page. Some information are hidden to keep the page readable.

Monsters
0-0-0, 0pts
2022-09-14
Wolves
0-0-0, 0pts
Team Stats
N/AStreakN/A
0-0-0Home Record0-0-0
0-0-0Away Record0-0-0
0-0-0Last 10 Games0-0-0
0.00Goals Per Game0.00
0.00Goals Against Per Game0.00
0.00%Power Play Percentage0.00%
0.00%Penalty Kill Percentage0.00%
Wolves
0-0-0, 0pts
2022-09-16
Barracuda
1-0-1, 3pts
Team Stats
N/AStreakOTL1
0-0-0Home Record0-0-1
0-0-0Away Record1-0-0
0-0-0Last 10 Games1-0-1
0.00Goals Per Game2.50
0.00Goals Against Per Game2.00
0.00%Power Play Percentage57.14%
0.00%Penalty Kill Percentage50.00%
Wolves
0-0-0, 0pts
2022-09-19
Firebirds
0-0-0, 0pts
Team Stats
N/AStreakN/A
0-0-0Home Record0-0-0
0-0-0Away Record0-0-0
0-0-0Last 10 Games0-0-0
0.00Goals Per Game0.00
0.00Goals Against Per Game0.00
0.00%Power Play Percentage0.00%
0.00%Penalty Kill Percentage0.00%
Team Leaders

Team Stats
Goals For
0
0.00 GFG
Shots For
0
0.00 Avg
Power Play Percentage
0.0%
0 GF
Offensive Zone Start
0.0%
Goals Against
0
0.00 GAA
Shots Against
0
0.00 Avg
Penalty Kill Percentage
0.0%
0 GA
Defensive Zone Start
0.0%
Team Info

General Managersmartty18
CoachJeff Blashill
DivisionMetropolitan Division
ConferenceEastern Conference
Captain
Assistant #1
Assistant #2


Arena Info

Capacity3,000
Attendance0
Season Tickets0


Roster Info

Pro Team23
Farm Team18
Contract Limit41 / 90
Prospects45


Team History

This Season0-0-0 (0PTS)
History66-72-24 (0.407%)
Playoff Appearances0
Playoff Record (W-L)-
Stanley Cup0


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPAgeContractSalary Average
1Anthony Louis0X100.00503675647360446340676462625767040580273750,000$
2Justin Kirkland0X100.00505175558660446140656462625968040580261800,000$
3Morgan Barron0X100.00875079549064525861626261615265040580231925,000$
4Tanner Laczynski0XXX100.00984375598260345954656155615164040570252800,000$
5Ryan MacInnis0X100.00505075548660445860646061606169040570261750,000$
6Tyler Angle (R)0X100.00503875607660495840655962605161040560222925,000$
7Greg Meireles (R)0X100.00504675587960275840665762595161040550231750,000$
8Kyle Topping (R)0XXX100.00504675567960365660645762595262040550222750,000$
9Matt Filipe (R)0X100.00504975538460375340615862595161040540241825,000$
10Reece Newkirk (R)0XXX100.00505175557960275260615662585161040530213750,000$
11Luka Burzan (R)0XXX100.00504175558060295140605762595463040530222750,000$
12Victor Soderstrom0X100.00664180597962456820655968605161040590212925,000$
13Adam Smith0X100.00504575518460466320605768595564040570251750,000$
14Ryan Zuhlsdorf (R)0X100.00504275548060266420615768595463040560252750,000$
15Koletrane Wilson (R)0X100.00505375498760366320605568585161040560231750,000$
16Chris Bigras0X100.00504375558260186720636268615465040560273750,000$
17Matthew Kessel (R)0X100.00504975498860106620635668585462040550222850,000$
18Alex Kannok Leipert (R)0X100.00505075518360196420605768595161040550222850,000$
Scratches
1Alexey Lipanov0XXX100.00504175548060104960585562585262040520231897,167$
TEAM AVERAGE100.0055467555826033603963596460536304056
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anthony Stolarz100.0079787589848382848381827671040780
2Erik Kallgren (R)100.0065726986696967707067687370040680
Scratches
1Kirill Ustimenko100.0049585586535351545350526867040560
2Colton Point100.0042585589464644464642457068040520
TEAM AVERAGE100.005967648863636164636062726904064
Coaches Name PH DF OF PD EX LD PO CNT Age Contract Salary
Jeff Blashill75757575757575USA498500,000$


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Player Name Team NamePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Goalie Name Team NameGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Player Name Team NamePOS Age Birthday Rookie Weight Height No Trade Available For Trade Force Waivers Contract Type Current Salary Salary RemainingSalary AverageSalary Ave RemainingSalary Cap Salary Cap Remaining Exclude from Salary Cap Salary Year 2Salary Year 3Salary Year 4Salary Year 5Salary Year 6Salary Year 7Salary Year 8Salary Year 9Salary Year 10Link
Adam SmithWolves (CAR)D2511/6/1996No200 Lbs6 ft1NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLink
Alex Kannok LeipertWolves (CAR)D227/20/2000Yes200 Lbs6 ft0NoNoNo2Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$Link
Alexey LipanovWolves (CAR)C/LW/RW238/17/1999No182 Lbs6 ft1NoNoNo1Pro & Farm897,167$887,673$897,167$887,673$0$0$NoLink
Anthony LouisWolves (CAR)LW272/10/1995No165 Lbs5 ft7NoNoNo3Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$750,000$Link
Anthony Stolarz (1 Way Contract)Wolves (CAR)G281/20/1994No229 Lbs6 ft5NoNoNo4Pro & Farm2,800,000$2,770,370$2,800,000$2,770,370$1,675,000$1,657,275$No2,800,000$2,800,000$2,800,000$Link
Chris BigrasWolves (CAR)D272/22/1995No191 Lbs6 ft1NoNoNo3Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$750,000$Link
Colton PointWolves (CAR)G247/1/1998No229 Lbs6 ft5NoNoNo3Pro & Farm850,000$841,005$0$0$No850,000$850,000$Link
Erik KallgrenWolves (CAR)G267/1/1996Yes194 Lbs6 ft3NoNoNo1Pro & Farm850,000$841,005$850,000$841,005$0$0$NoLink
Greg MeirelesWolves (CAR)RW231/1/1999Yes182 Lbs5 ft11NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLink
Justin KirklandWolves (CAR)LW268/2/1996No205 Lbs6 ft3NoNoNo1Pro & Farm800,000$791,534$800,000$791,534$0$0$NoLink
Kirill UstimenkoWolves (CAR)G237/1/1999No187 Lbs6 ft3NoNoNo1Pro & Farm700,000$692,593$700,000$692,593$0$0$NoLink
Koletrane WilsonWolves (CAR)D239/1/1999Yes210 Lbs6 ft2NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLink
Kyle ToppingWolves (CAR)C/LW/RW2211/18/1999Yes185 Lbs5 ft11NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Link
Luka BurzanWolves (CAR)C/LW/RW221/7/2000Yes185 Lbs6 ft0NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Link
Matt FilipeWolves (CAR)LW2412/31/1997Yes196 Lbs6 ft2NoNoNo1Pro & Farm825,000$816,270$825,000$816,270$0$0$NoLink
Matthew KesselWolves (CAR)D226/23/2000Yes215 Lbs6 ft3NoNoNo2Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$Link
Morgan BarronWolves (CAR)C2312/2/1998No220 Lbs6 ft4NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLink
Reece NewkirkWolves (CAR)C/LW/RW212/20/2001Yes182 Lbs5 ft11NoNoNo3Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$750,000$Link
Ryan MacInnisWolves (CAR)C262/14/1996No201 Lbs6 ft4NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLink
Ryan ZuhlsdorfWolves (CAR)D257/1/1997Yes187 Lbs5 ft11NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Link
Tanner LaczynskiWolves (CAR)C/LW/RW256/1/1997No190 Lbs6 ft1NoNoNo2Pro & Farm800,000$791,534$800,000$791,534$0$0$No800,000$Link
Tyler AngleWolves (CAR)LW229/30/2000Yes172 Lbs5 ft10NoNoNo2Pro & Farm925,000$915,212$925,000$915,212$0$0$No925,000$Link
Victor SoderstromWolves (CAR)D212/26/2001No184 Lbs5 ft11NoNoNo2Pro & Farm925,000$915,212$925,000$915,212$0$0$No925,000$Link
Total PlayersAverage AgeAverage WeightAverage HeightAverage ContractAverage Year 1 Salary
2323.91195 Lbs6 ft11.83891,181$



5 vs 5 Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Anthony LouisMorgan BarronJustin Kirkland40122
2Tanner LaczynskiRyan MacInnisTyler Angle30122
3Kyle ToppingGreg MeirelesMatt Filipe20122
4Reece NewkirkLuka BurzanAnthony Louis10122
5 vs 5 Defense
Line #DefenseDefenseTime %PHYDFOF
1Victor SoderstromAdam Smith40122
2Ryan ZuhlsdorfChris Bigras30122
3Victor SoderstromKoletrane Wilson20122
4Alex Kannok LeipertKoletrane Wilson10122
Power Play Forward
Line #Left WingCenterRight WingTime %PHYDFOF
1Morgan BarronAnthony LouisJustin Kirkland60122
2Tanner LaczynskiRyan MacInnisTyler Angle40122
Power Play Defense
Line #DefenseDefenseTime %PHYDFOF
1Victor SoderstromAdam Smith60122
2Koletrane WilsonAlex Kannok Leipert40122
Penalty Kill 4 Players Forward
Line #CenterWingTime %PHYDFOF
1Anthony LouisJustin Kirkland60122
2Greg MeirelesKyle Topping40122
Penalty Kill 4 Players Defense
Line #DefenseDefenseTime %PHYDFOF
1Victor SoderstromAdam Smith60122
2Ryan ZuhlsdorfKoletrane Wilson40122
Penalty Kill 3 Players
Line #WingTime %PHYDFOFDefenseDefenseTime %PHYDFOF
1Morgan Barron60122Victor SoderstromAdam Smith60122
2Anthony Louis40122Koletrane WilsonChris Bigras40122
4 vs 4 Forward
Line #CenterWingTime %PHYDFOF
1Anthony LouisMorgan Barron60122
2Justin KirklandMatt Filipe40122
4 vs 4 Defense
Line #DefenseDefenseTime %PHYDFOF
1Adam SmithVictor Soderstrom60122
2Chris BigrasRyan Zuhlsdorf40122
Last Minutes Offensive
Left WingCenterRight WingDefenseDefense
Anthony LouisMorgan BarronJustin KirklandVictor SoderstromAdam Smith
Last Minutes Defensive
Left WingCenterRight WingDefenseDefense
Anthony LouisMorgan BarronJustin KirklandVictor SoderstromAdam Smith
Extra Forwards
Normal PowerPlayPenalty Kill
Luka Burzan, Anthony Louis, Morgan BarronJustin Kirkland, Ryan MacInnisReece Newkirk
Extra Defensemen
Normal PowerPlayPenalty Kill
Adam Smith, Victor Soderstrom, Matthew KesselAdam SmithVictor Soderstrom, Adam Smith
Penalty Shots
Luka Burzan, Anthony Louis, Morgan Barron, Justin Kirkland, Ryan MacInnis
Goalie
#1 : Anthony Stolarz, #2 : Erik Kallgren
Custom OT Lines Forwards
Reece Newkirk, Luka Burzan, Anthony Louis, Morgan Barron, Justin Kirkland, Tanner Laczynski, Tanner Laczynski, Ryan MacInnis, Tyler Angle, Kyle Topping, Greg Meireles
Custom OT Lines Defensemen
Adam Smith, Alex Kannok Leipert, Matthew Kessel, Chris Bigras, Victor Soderstrom


Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
OverallHomeVisitor
# VS Team GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total For Players
Games PlayedPointsStreakGoalsAssistsPointsShots ForShots AgainstShots BlockedPenalty MinutesHitsEmpty Net GoalsShutouts
00N/A0000000000
All Games
GPWLOTWOTL SOWSOLGFGA
000000000
Home Games
GPWLOTWOTL SOWSOLGFGA
000000000
Visitor Games
GPWLOTWOTL SOWSOLGFGA
000000000
Last 10 Games
WLOTWOTL SOWSOL
000000
Power Play AttempsPower Play GoalsPower Play %Penalty Kill AttempsPenalty Kill Goals AgainstPenalty Kill %Penalty Kill Goals For
000.00%000.00%0
Shots 1 PeriodShots 2 PeriodShots 3 PeriodShots 4+ PeriodGoals 1 PeriodGoals 2 PeriodGoals 3 PeriodGoals 4+ Period
00000000
Face Offs
Won Offensive ZoneTotal OffensiveWon Offensive %Won Defensif ZoneTotal DefensiveWon Defensive %Won Neutral ZoneTotal NeutralWon Neutral %
000.00%000.00%000.00%
Puck Time
In Offensive ZoneControl In Offensive ZoneIn Defensive ZoneControl In Defensive ZoneIn Neutral ZoneControl In Neutral Zone
000000


Last Played Games
Filter Tips
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
DayGame Visitor Team Score Home Team Score ST OT SO RI Link
6 - 2022-09-146Monsters-Wolves-
8 - 2022-09-1624Wolves-Barracuda-
11 - 2022-09-1947Wolves-Firebirds-
14 - 2022-09-2269Wolves-Condors-
16 - 2022-09-2486Wolves-Heat-
18 - 2022-09-2697Wolves-Canucks-
22 - 2022-09-30124Islanders-Wolves-
23 - 2022-10-01132Wolves-Phantoms-
25 - 2022-10-03145Bears-Wolves-
28 - 2022-10-06162Wolves-Crunch-
29 - 2022-10-07175Americans-Wolves-
31 - 2022-10-09191Marlies-Wolves-
34 - 2022-10-12207Wolves-Checkers-
35 - 2022-10-13212Condors-Wolves-
37 - 2022-10-15233Wolves-Eagles-
39 - 2022-10-17246Wolves-IceHogs-
42 - 2022-10-20261Eagles-Wolves-
44 - 2022-10-22283Wolves-Wild-
46 - 2022-10-24294Wolves-Moose-
48 - 2022-10-26304Roadrunners-Wolves-
50 - 2022-10-28318Wolves-Bruins-
51 - 2022-10-29333Heat-Wolves-
54 - 2022-11-01352Wolves-Penguins-
56 - 2022-11-03369Wolves-Thunderbirds-
58 - 2022-11-05391Wolves-Reign-
61 - 2022-11-08410Wolves-Gulls-
65 - 2022-11-12440Wolves-Islanders-
68 - 2022-11-15460Wolves-Griffins-
70 - 2022-11-17475Firebirds-Wolves-
72 - 2022-11-19487Stars-Wolves-
73 - 2022-11-20498Penguins-Wolves-
75 - 2022-11-22512Comets-Wolves-
77 - 2022-11-24526Wolves-Penguins-
78 - 2022-11-25535Phantoms-Wolves-
82 - 2022-11-29548IceHogs-Wolves-
85 - 2022-12-02575Checkers-Wolves-
87 - 2022-12-04590Wolves-Comets-
89 - 2022-12-06600Wolves-Wolf Pack-
91 - 2022-12-08614Admirals-Wolves-
93 - 2022-12-10629Wolves-Monsters-
96 - 2022-12-13650Comets-Wolves-
98 - 2022-12-15662Wolves-Monsters-
100 - 2022-12-17682Penguins-Wolves-
101 - 2022-12-18692Canucks-Wolves-
105 - 2022-12-22721Wild-Wolves-
107 - 2022-12-24739Wolves-Islanders-
111 - 2022-12-28769Wolves-Stars-
113 - 2022-12-30783Barracuda-Wolves-
115 - 2023-01-01799Bruins-Wolves-
117 - 2023-01-03802Reign-Wolves-
118 - 2023-01-04805Wolves-Americans-
128 - 2023-01-14841Wolf Pack-Wolves-
131 - 2023-01-17855Wolves-Bears-
133 - 2023-01-19871Rocket-Wolves-
135 - 2023-01-21889Bears-Wolves-
138 - 2023-01-24911Thunderbirds-Wolves-
141 - 2023-01-27933Senators-Wolves-
142 - 2023-01-28939Gulls-Wolves-
146 - 2023-02-01972Wolves-Silver Knights-
148 - 2023-02-03986Wolves-Roadrunners-
150 - 2023-02-051001Crunch-Wolves-
152 - 2023-02-071012Wolves-Rocket-
154 - 2023-02-091030Phantoms-Wolves-
156 - 2023-02-111046Silver Knights-Wolves-
157 - 2023-02-121056Wolves-Comets-
159 - 2023-02-141068Moose-Wolves-
162 - 2023-02-171092Wolves-Marlies-
163 - 2023-02-181099Wolves-Phantoms-
166 - 2023-02-211120Wolves-Wolf Pack-
168 - 2023-02-231138Wolf Pack-Wolves-
170 - 2023-02-251161Marlies-Wolves-
171 - 2023-02-261166Bruins-Wolves-
173 - 2023-02-281179Crunch-Wolves-
175 - 2023-03-021195Wolves-Griffins-
177 - 2023-03-041207Wolves-Rocket-
178 - 2023-03-051219Islanders-Wolves-
180 - 2023-03-071232Senators-Wolves-
182 - 2023-03-091250Wolves-Admirals-
184 - 2023-03-111257Wolves-Americans-
186 - 2023-03-131277Wolves-Senators-
187 - 2023-03-141288Griffins-Wolves-
189 - 2023-03-161299Wolves-Checkers-



Arena Capacity - Ticket Price Attendance - %
Level 1Level 2
Capacity20001000
Ticket Price350
Attendance0.00%0.00%
Attendance PCT0.00%0.00%

Income
Home Games LeftAverage Attendance - %Average Income per GameYear to Date RevenueCapacityTeam Popularity
41 0 - 0.00%0$0$3000100

Expenses
Year To Date ExpensesPlayers Total SalariesPlayers Total Average SalariesCoaches Salaries
18,728$ 1,769,717$ 1,684,717$ 0$
Salary Cap Per DaysSalary Cap To DatePlayers In Salary CapPlayers Out of Salary Cap
8,914$ 17,828$ 0 0

Estimate
Estimated Season RevenueRemaining Season DaysExpenses Per DaysEstimated Season Expenses
0$ 187 9,364$ 1,751,068$




OverallHomeVisitor
Year GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Regular Season
118218360101152132178-46411518014217189-1841318097316189-2879132218350271249561914343095035776823317432371218823239.02%1063566.98%3530105850.09%733142951.29%42384150.30%1363506165986019641019
118218360101152132178-46411518014217189-1841318097316189-2879132218350271249561914343095035776823317432371218823239.02%1063566.98%3530105850.09%733142951.29%42384150.30%1363506165986019641019
Total Regular Season164367202022104264356-9282303602842142178-36826360181462122178-561582644367004142498112382868618100611541364662148647424361646439.02%2127066.98%61060211650.09%1466285851.29%846168250.30%272710133318172139292038