Connexion

Phantoms
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: bananaduck | Morale : 40 | Moyenne d’équipe : 56
Prochain matchs #12 vs Comets
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Comets
0-0-0, 0pts
2022-09-15
Phantoms
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Canucks
0-0-0, 0pts
2022-09-17
Phantoms
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Phantoms
0-0-0, 0pts
2022-09-20
Crunch
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Meneurs d'équipe

Statistiques d’équipe
Buts pour
0
0.00 GFG
Tirs pour
0
0.00 Avg
Pourcentage en avantage numérique
0.0%
0 GF
Début de zone offensive
0.0%
Buts contre
0
0.00 GAA
Tirs contre
0
0.00 Avg
Pourcentage en désavantage numérique
0.0%
0 GA
Début de la zone défensive
0.0%
Information d’équipe

Directeur généralbananaduck
EntraîneurRon Rolston
DivisionMetropolitan Division
ConférenceEastern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison0


Information formation

Équipe Pro24
Équipe Mineure18
Limite contact 42 / 90
Espoirs23


Historique d'équipe

Saison actuelle0-0-0 (0PTS)
Historique78-62-16 (0.500%)
Apparitions séries éliminatoires 0
Historique séries éliminatoires (W-L)-
Stanley Cup0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Jack Studnicka68X100.007342786281624959736960616055640405902311,125,000$
2Jeff Malott (R)0X100.00984574588560516040646464625265040590261800,000$
3Cole Reinhardt (R)23X100.00905075558360555640626065605265040580222800,000$
4Michael Mersch28X100.00505275558660436340666562636874040580301750,000$
5Lane Pederson93X100.00884380608166515766635961605568040580252900,000$
6Alex Belzile0XX100.00814978578360415752636162615969040570311750,000$
7Justin Bailey0X100.00654979548960415946636363625667040570271750,000$
8Jacob Perreault (R)0X100.00504875578160476040656156615262040560203850,000$
9Joel Teasdale (R)41X100.00505175558460226040646362625463040560231800,000$
10Brian Flynn0X100.00504175578160395660626062606067040560341750,000$
11Jake McGrew (R)80XXX100.00504775568060385640626062605262040550231750,000$
12Spencer Smallman75X100.00504575548460435640635962605665040550261850,000$
13Mason Millman (R)0X100.00503975567960266420615868595463040560213750,000$
14Jeremy Groleau70X100.00504475528460286520625768595262040560221750,000$
15Giovanni Vallati0X100.00504275538260396320605768595161040560222750,000$
16Frank Hora0X100.00505375498760306420615668585867040560261750,000$
17J D Greenway (R)0X100.00504875498960206320605568585161040550241750,000$
18Jacob LeGuerrier (R)0X100.00504675508460236320605768595161040550212750,000$
Rayé
1Cole Coskey (R)0XXX100.00504575528460385240625662585161040540232750,000$
2Matej Pekar (R)92X100.00504675548160255040595662585161040530222750,000$
3Matthew Barnaby0XXX100.00504875528360105040595662585060040520241750,000$
4Blake Hillman0X100.005045755384602167206456685858660405602600$
MOYENNE D’ÉQUIPE100.0059467655836035593862596460546404056
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Pat Nagle100.0058676485626260636360618876040650
2Cedrick Andree (R)100.0028474480333333333328316667040420
Rayé
MOYENNE D’ÉQUIPE100.004357548348484748484446777204054
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Ron Rolston75757575757575USA568500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantSalaire moyenSalaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex BelzilePhantoms (PHI)C/RW318/31/1991No197 Lbs6 ft0NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Blake HillmanPhantoms (PHI)D261/26/1996No200 Lbs6 ft1NoNoNo0Pro & Farm0$0$NoLien
Brian FlynnPhantoms (PHI)C347/26/1988No185 Lbs6 ft1NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Cedrick AndreePhantoms (PHI)G226/7/2000Yes172 Lbs5 ft10NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Cole CoskeyPhantoms (PHI)C/LW/RW236/1/1999Yes200 Lbs6 ft1NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Cole ReinhardtPhantoms (PHI)LW222/1/2000Yes200 Lbs6 ft0NoNoNo2Pro & Farm800,000$791,534$800,000$791,534$0$0$No800,000$Lien
Frank HoraPhantoms (PHI)D266/1/1996No210 Lbs6 ft2NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Giovanni VallatiPhantoms (PHI)D222/21/2000No187 Lbs6 ft2NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
J D GreenwayPhantoms (PHI)D244/27/1998Yes211 Lbs6 ft5NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Jack StudnickaPhantoms (PHI)C232/18/1999No186 Lbs6 ft2NoNoNo1Pro & Farm1,125,000$1,113,095$1,125,000$1,113,095$0$0$NoLien
Jacob LeGuerrierPhantoms (PHI)D2110/22/2000Yes203 Lbs6 ft1NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Jacob PerreaultPhantoms (PHI)RW204/15/2002Yes192 Lbs5 ft11NoNoNo3Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$850,000$Lien
Jake McGrewPhantoms (PHI)C/LW/RW232/25/1999Yes187 Lbs5 ft11NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Jeff MalottPhantoms (PHI)LW268/7/1996Yes201 Lbs6 ft3NoNoNo1Pro & Farm800,000$791,534$800,000$791,534$0$0$NoLien
Jeremy GroleauPhantoms (PHI)D2210/25/1999No197 Lbs6 ft3NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Joel TeasdalePhantoms (PHI)LW233/11/1999Yes203 Lbs6 ft0NoNoNo1Pro & Farm800,000$791,534$800,000$791,534$0$0$NoLien
Justin BaileyPhantoms (PHI)RW277/1/1995No214 Lbs6 ft4NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Lane PedersonPhantoms (PHI)C258/4/1997No192 Lbs6 ft0NoNoNo2Pro & Farm900,000$890,476$900,000$890,476$0$0$No900,000$Lien
Mason MillmanPhantoms (PHI)D217/18/2001Yes176 Lbs6 ft1NoNoNo3Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$750,000$Lien
Matej PekarPhantoms (PHI)LW222/10/2000Yes185 Lbs6 ft1NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Matthew BarnabyPhantoms (PHI)C/LW/RW245/2/1998No193 Lbs6 ft2NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Michael MerschPhantoms (PHI)LW3010/2/1992No209 Lbs6 ft2NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Pat NaglePhantoms (PHI)G357/1/1987No201 Lbs6 ft2NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Spencer SmallmanPhantoms (PHI)RW269/9/1996No200 Lbs6 ft1NoNoNo1Pro & Farm850,000$841,005$850,000$841,005$0$0$NoLien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2424.92196 Lbs6 ft11.42755,208$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jeff MalottJack StudnickaAlex Belzile40122
2Michael MerschLane PedersonJustin Bailey30122
3Cole ReinhardtBrian FlynnJacob Perreault20122
4Joel TeasdaleJake McGrewSpencer Smallman10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Giovanni VallatiFrank Hora40122
2Jeremy GroleauMason Millman30122
3J D GreenwayJacob LeGuerrier20122
4Giovanni VallatiFrank Hora10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jeff MalottJack StudnickaAlex Belzile60122
2Michael MerschLane PedersonJustin Bailey40122
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Giovanni VallatiFrank Hora60122
2Jeremy GroleauMason Millman40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Jack StudnickaJeff Malott60122
2Michael MerschCole Reinhardt40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Giovanni VallatiFrank Hora60122
2Jeremy GroleauMason Millman40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Jack Studnicka60122Giovanni VallatiFrank Hora60122
2Jeff Malott40122Jeremy GroleauMason Millman40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Jack StudnickaJeff Malott60122
2Michael MerschCole Reinhardt40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Giovanni VallatiFrank Hora60122
2Jeremy GroleauMason Millman40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jeff MalottJack StudnickaAlex BelzileGiovanni VallatiFrank Hora
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Jeff MalottJack StudnickaAlex BelzileGiovanni VallatiFrank Hora
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Brian Flynn, Joel Teasdale, Jacob PerreaultBrian Flynn, Joel TeasdaleJacob Perreault
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
J D Greenway, Jacob LeGuerrier, Jeremy GroleauJ D GreenwayJacob LeGuerrier, Jeremy Groleau
Tirs de pénalité
Jack Studnicka, Jeff Malott, Michael Mersch, Cole Reinhardt, Lane Pederson
Gardien
#1 : Pat Nagle, #2 : Cedrick Andree
Lignes d’attaque personnalisées en prolongation
Jack Studnicka, Jeff Malott, Michael Mersch, Cole Reinhardt, Lane Pederson, Alex Belzile, Alex Belzile, Justin Bailey, Brian Flynn, Joel Teasdale, Jacob Perreault
Lignes de défense personnalisées en prolongation
Giovanni Vallati, Frank Hora, Jeremy Groleau, Mason Millman, J D Greenway


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
00N/A0000000000
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 matchs
WLOTWOTL SOWSOL
000000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
000.00%000.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
00000000
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
000.00%000.00%000.00%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
000000


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
7 - 2022-09-1512Comets-Phantoms-
9 - 2022-09-1726Canucks-Phantoms-
12 - 2022-09-2053Phantoms-Crunch-
13 - 2022-09-2156Phantoms-Checkers-
16 - 2022-09-2483Phantoms-Admirals-
17 - 2022-09-2591Barracuda-Phantoms-
21 - 2022-09-29112Checkers-Phantoms-
23 - 2022-10-01132Wolves-Phantoms-
26 - 2022-10-04149Phantoms-Wolf Pack-
27 - 2022-10-05159Phantoms-Marlies-
30 - 2022-10-08183Phantoms-Senators-
33 - 2022-10-11199Thunderbirds-Phantoms-
35 - 2022-10-13214Phantoms-Monsters-
37 - 2022-10-15225Senators-Phantoms-
38 - 2022-10-16238Stars-Phantoms-
40 - 2022-10-18250Phantoms-Monsters-
42 - 2022-10-20265Phantoms-Bruins-
44 - 2022-10-22281Phantoms-Rocket-
46 - 2022-10-24292Heat-Phantoms-
48 - 2022-10-26312Phantoms-Bears-
50 - 2022-10-28324Penguins-Phantoms-
51 - 2022-10-29337Phantoms-Islanders-
54 - 2022-11-01353Islanders-Phantoms-
56 - 2022-11-03367Crunch-Phantoms-
58 - 2022-11-05382Comets-Phantoms-
60 - 2022-11-07397Eagles-Phantoms-
62 - 2022-11-09413Bears-Phantoms-
64 - 2022-11-11432Phantoms-Silver Knights-
66 - 2022-11-13445Phantoms-Roadrunners-
68 - 2022-11-15464Phantoms-Eagles-
70 - 2022-11-17473Phantoms-Comets-
72 - 2022-11-19489Wolf Pack-Phantoms-
75 - 2022-11-22510Monsters-Phantoms-
77 - 2022-11-24525Phantoms-Marlies-
78 - 2022-11-25535Phantoms-Wolves-
84 - 2022-12-01573Phantoms-Barracuda-
86 - 2022-12-03580Phantoms-Reign-
88 - 2022-12-05597Phantoms-Gulls-
91 - 2022-12-08612Roadrunners-Phantoms-
94 - 2022-12-11643Marlies-Phantoms-
97 - 2022-12-14659Bears-Phantoms-
100 - 2022-12-17681Phantoms-Bears-
102 - 2022-12-19695Phantoms-Bruins-
103 - 2022-12-20705Gulls-Phantoms-
105 - 2022-12-22719IceHogs-Phantoms-
107 - 2022-12-24735Phantoms-Griffins-
108 - 2022-12-25749Moose-Phantoms-
110 - 2022-12-27757Reign-Phantoms-
112 - 2022-12-29779Phantoms-Wild-
114 - 2022-12-31790Phantoms-Moose-
123 - 2023-01-09807Islanders-Phantoms-
126 - 2023-01-12822Condors-Phantoms-
128 - 2023-01-14836Admirals-Phantoms-
129 - 2023-01-15848Firebirds-Phantoms-
133 - 2023-01-19876Phantoms-Firebirds-
135 - 2023-01-21890Phantoms-Canucks-
137 - 2023-01-23905Phantoms-Heat-
138 - 2023-01-24916Phantoms-Condors-
141 - 2023-01-27932Rocket-Phantoms-
142 - 2023-01-28941Phantoms-Comets-
146 - 2023-02-01968Wolf Pack-Phantoms-
149 - 2023-02-04990Phantoms-Americans-
150 - 2023-02-051003Griffins-Phantoms-
152 - 2023-02-071014Phantoms-Crunch-
154 - 2023-02-091030Phantoms-Wolves-
156 - 2023-02-111039Phantoms-Penguins-
159 - 2023-02-141066Silver Knights-Phantoms-
162 - 2023-02-171091Americans-Phantoms-
163 - 2023-02-181099Wolves-Phantoms-
166 - 2023-02-211122Checkers-Phantoms-
168 - 2023-02-231136Wild-Phantoms-
170 - 2023-02-251150Griffins-Phantoms-
173 - 2023-02-281177Rocket-Phantoms-
175 - 2023-03-021193Phantoms-Senators-
177 - 2023-03-041206Americans-Phantoms-
178 - 2023-03-051221Phantoms-Penguins-
180 - 2023-03-071234Phantoms-Thunderbirds-
182 - 2023-03-091252Phantoms-Stars-
184 - 2023-03-111268Phantoms-Islanders-
185 - 2023-03-121273Bruins-Phantoms-
187 - 2023-03-141287Monsters-Phantoms-
189 - 2023-03-161306Phantoms-IceHogs-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets350
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
41 0 - 0.00%0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
19,180$ 1,812,500$ 1,812,500$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
9,590$ 19,180$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 187 9,590$ 1,793,330$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
11823031071121169186-174118130360195950411218045207491-1790169274443582471651320244727667376023027432631768913538.46%942573.40%2650134148.47%663146045.41%43793646.69%150066715998351848916
11823031071121169186-174118130360195950411218045207491-1790169274443582471651320244727667376023027432631768913538.46%942573.40%2650134148.47%663146045.41%43793646.69%150066715998351848916
Total Saison régulière16460620142242338372-348236260612021901900822436081040148182-34180338548886101648142130264048944153214741204604148652635361827038.46%1885073.40%41300268248.47%1326292045.41%874187246.69%300013353198167036961832