Connexion

Monsters
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: MixtureBill | Morale : 40 | Moyenne d’équipe : 61
Prochain matchs #6 vs Wolves
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Monsters
0-0-0, 0pts
2022-09-14
Wolves
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Crunch
0-0-0, 0pts
2022-09-16
Monsters
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Monsters
0-0-0, 0pts
2022-09-17
Thunderbirds
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Meneurs d'équipe

Statistiques d’équipe
Buts pour
0
0.00 GFG
Tirs pour
0
0.00 Avg
Pourcentage en avantage numérique
0.0%
0 GF
Début de zone offensive
0.0%
Buts contre
0
0.00 GAA
Tirs contre
0
0.00 Avg
Pourcentage en désavantage numérique
0.0%
0 GA
Début de la zone défensive
0.0%
Information d’équipe

Directeur généralMixtureBill
EntraîneurDoug Houda
DivisionMetropolitan Division
ConférenceEastern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison0


Information formation

Équipe Pro29
Équipe Mineure18
Limite contact 47 / 90
Espoirs34


Historique d'équipe

Saison actuelle0-0-0 (0PTS)
Historique112-22-24 (0.709%)
Apparitions séries éliminatoires 2
Historique séries éliminatoires (W-L)22-16
Stanley Cup0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1MacKenzie Entwistle0X100.00934695658174625953646066605265040610231900,000$
2Alex Barre-Boulet0X100.00584078647860566754726360625565040600251950,000$
3Evgeny Svechnikov0X100.007947826087767157536561636152630406002521,200,000$
4Karson Kuhlman0X100.00834388648078595846646065605565040600271950,000$
5Chris Wagner0XX100.00994375648160515646626163617684040600311925,000$
6Oskar Steen0X100.00824579598161556149666361625364040590241850,000$
7Mitchell Stephens0X100.00624383638077505775675566585362040590251850,000$
8Tyce Thompson0XXX100.00705477637860286167686363625261040580231500,000$
9Radim Zohorna0XX100.007750785491614861526563626252630405802631,000,000$
10Anthony Angello0X100.009953755489604356466359596054670405702611,000,000$
11Brett Leason0X100.00555079539064575753636062605363040570231925,000$
12Wade Allison0XXX100.00704675558660345940636359625161040560241925,000$
13Colin Miller0X100.007750916583836176207362736162710406702931,750,000$
14Mike Reilly0X100.007744886383837768206663726258680406602911,250,000$
15Gavin Bayreuther0X100.00745485608371547020665671585968040630282850,000$
16Jordan Gross0X100.00704374618060507920756465625564040610274850,000$
17Matt Kiersted0X100.00704077587960566620636067605362040600241925,000$
18Jacob Moverare (R)0X100.00644881538763476820635968605161040590241800,000$
Rayé
1James Hamblin (R)0X100.00504075597760425840626362625463040560232800,000$
2Tyler Tucker0X100.00506175518560506620635768595564040580222750,000$
3Brennan Menell0X100.00504475577860166620635768595665040560251850,000$
4Philip Kemp (R)0X100.00505375498760336420605868595161040560231750,000$
5Max Gildon (R)0X100.00504275548260106620625768595262040550231800,000$
MOYENNE D’ÉQUIPE100.0070478059836648633865606560556504059
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Casey DeSmith100.0077777483828080828179808073040770
2Dustin Wolf (R)100.0072747182767673777674756566040720
Rayé
1Zane McIntyre100.0069726986747371757471727872040720
2Jon Gillies100.0062726990676665676763657671040670
3Pyotr Kochetkov (R)100.0061646185666566666662656867040650
4Kyle Keyser100.0060666385646462656461636867040640
MOYENNE D’ÉQUIPE100.006771688572717072716870736904070
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Doug Houda75757575757575CAN558500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantSalaire moyenSalaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Alex Barre-BouletMonsters (CBJ)C255/21/1997No180 Lbs5 ft10NoNoNo1Pro & Farm950,000$939,947$950,000$939,947$0$0$NoLien
Anthony AngelloMonsters (CBJ)RW263/6/1996No210 Lbs6 ft5NoNoNo1Pro & Farm1,000,000$989,418$1,000,000$989,418$0$0$NoLien
Brennan MenellMonsters (CBJ)D255/24/1997No177 Lbs5 ft11NoNoNo1Pro & Farm850,000$841,005$850,000$841,005$0$0$NoLien
Brett LeasonMonsters (CBJ)RW234/30/1999No218 Lbs6 ft5NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLien
Casey DeSmith (contrat à 1 volet)Monsters (CBJ)G318/13/1991No181 Lbs6 ft0NoNoNo4Pro & Farm1,125,000$1,113,095$1,125,000$1,113,095$0$0$No1,125,000$1,125,000$1,125,000$Lien
Chris WagnerMonsters (CBJ)C/RW315/27/1991No191 Lbs6 ft0NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLien
Colin Miller (contrat à 1 volet)Monsters (CBJ)D2910/29/1992No198 Lbs6 ft1NoNoNo3Pro & Farm1,750,000$1,731,481$1,750,000$1,731,481$625,000$618,386$No1,750,000$1,750,000$Lien
Dustin WolfMonsters (CBJ)G217/1/2001Yes157 Lbs6 ft0NoNoNo3Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$850,000$Lien
Evgeny Svechnikov (contrat à 1 volet)Monsters (CBJ)LW2510/31/1996No208 Lbs6 ft3NoNoNo2Pro & Farm1,200,000$1,187,302$1,200,000$1,187,302$75,000$74,206$No1,200,000$Lien
Gavin BayreutherMonsters (CBJ)D285/12/1994No196 Lbs6 ft1NoNoNo2Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$Lien
Jacob MoverareMonsters (CBJ)D248/31/1998Yes210 Lbs6 ft3NoNoNo1Pro & Farm800,000$791,534$800,000$791,534$0$0$NoLien
James HamblinMonsters (CBJ)LW234/27/1999Yes180 Lbs5 ft9NoNoNo2Pro & Farm800,000$791,534$800,000$791,534$0$0$No800,000$Lien
Jon GilliesMonsters (CBJ)G281/22/1994No223 Lbs6 ft6NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Jordan Gross (contrat à 1 volet)Monsters (CBJ)D275/9/1995No190 Lbs5 ft10NoNoNo4Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$850,000$850,000$Lien
Karson Kuhlman (contrat à 1 volet)Monsters (CBJ)C279/26/1995No190 Lbs5 ft10NoNoNo1Pro & Farm950,000$939,947$950,000$939,947$0$0$NoLien
Kyle KeyserMonsters (CBJ)G237/1/1999No179 Lbs6 ft2NoNoNo1Pro & Farm850,000$841,005$850,000$841,005$0$0$NoLien
MacKenzie EntwistleMonsters (CBJ)RW237/14/1999No184 Lbs6 ft3NoNoNo1Pro & Farm900,000$890,476$900,000$890,476$0$0$NoLien
Matt KierstedMonsters (CBJ)D244/14/1998No181 Lbs6 ft0NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLien
Max GildonMonsters (CBJ)D235/17/1999Yes187 Lbs6 ft3NoNoNo1Pro & Farm800,000$791,534$800,000$791,534$0$0$NoLien
Mike ReillyMonsters (CBJ)D297/13/1993No195 Lbs6 ft2NoNoNo1Pro & Farm1,250,000$1,236,772$1,250,000$1,236,772$0$0$NoLien
Mitchell StephensMonsters (CBJ)C252/5/1997No190 Lbs5 ft11NoNoNo1Pro & Farm850,000$841,005$850,000$841,005$0$0$NoLien
Oskar SteenMonsters (CBJ)C243/9/1998No199 Lbs5 ft9NoNoNo1Pro & Farm850,000$841,005$850,000$841,005$0$0$NoLien
Philip KempMonsters (CBJ)D232/12/1999Yes211 Lbs6 ft3NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Pyotr KochetkovMonsters (CBJ)G236/25/1999Yes179 Lbs6 ft2NoNoNo2Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$Lien
Radim Zohorna (contrat à 1 volet)Monsters (CBJ)C/LW264/29/1996No220 Lbs6 ft6NoNoNo3Pro & Farm1,000,000$989,418$1,000,000$989,418$0$0$No1,000,000$1,000,000$Lien
Tyce ThompsonMonsters (CBJ)C/LW/RW237/12/1999No175 Lbs6 ft1NoNoNo1Pro & Farm500,000$494,709$500,000$494,709$0$0$NoLien
Tyler TuckerMonsters (CBJ)D223/1/2000No205 Lbs6 ft1NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Wade AllisonMonsters (CBJ)C/LW/RW2410/14/1997No205 Lbs6 ft2NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLien
Zane McIntyreMonsters (CBJ)G308/20/1992No205 Lbs6 ft2NoNoNo1Pro & Farm1,000,000$989,418$1,000,000$989,418$0$0$NoLien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2925.34194 Lbs6 ft11.62923,276$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Alex Barre-BouletTyce ThompsonWade Allison40014
2Evgeny SvechnikovMitchell StephensOskar Steen35014
3Chris WagnerRadim ZohornaKarson Kuhlman17023
4Anthony AngelloBrett LeasonMacKenzie Entwistle8032
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Colin MillerJordan Gross37023
2Gavin BayreutherMike Reilly33023
3Jacob MoverareMatt Kiersted22032
4Colin MillerMike Reilly8014
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Alex Barre-BouletTyce ThompsonWade Allison60005
2Radim ZohornaMitchell StephensOskar Steen40005
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Colin MillerJordan Gross60005
2Gavin BayreutherMike Reilly40005
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Mitchell StephensMacKenzie Entwistle60122
2Evgeny SvechnikovKarson Kuhlman40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Gavin BayreutherJacob Moverare60122
2Matt KierstedMike Reilly40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Mitchell Stephens60122Gavin BayreutherJacob Moverare60122
2MacKenzie Entwistle40122Mike ReillyMatt Kiersted40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Tyce ThompsonRadim Zohorna60122
2Mitchell StephensWade Allison40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Colin MillerJordan Gross60122
2Mike ReillyGavin Bayreuther40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Alex Barre-BouletTyce ThompsonWade AllisonColin MillerJordan Gross
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Karson KuhlmanMitchell StephensMacKenzie EntwistleColin MillerMike Reilly
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Radim Zohorna, Karson Kuhlman, MacKenzie EntwistleChris Wagner, Evgeny SvechnikovChris Wagner
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Jordan Gross, Gavin Bayreuther, Matt KierstedJacob MoverareColin Miller, Jordan Gross
Tirs de pénalité
Tyce Thompson, Radim Zohorna, Wade Allison, Alex Barre-Boulet, Oskar Steen
Gardien
#1 : Casey DeSmith, #2 : Dustin Wolf
Lignes d’attaque personnalisées en prolongation
Alex Barre-Boulet, MacKenzie Entwistle, Mitchell Stephens, Karson Kuhlman, Tyce Thompson, Evgeny Svechnikov, Evgeny Svechnikov, Oskar Steen, , ,
Lignes de défense personnalisées en prolongation
Colin Miller, Jordan Gross, Mike Reilly, Gavin Bayreuther, Matt Kiersted


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
00N/A0000000000
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 matchs
WLOTWOTL SOWSOL
000000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
000.00%000.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
00000000
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
000.00%000.00%000.00%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
000000


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
6 - 2022-09-146Monsters-Wolves-
8 - 2022-09-1621Crunch-Monsters-
9 - 2022-09-1733Monsters-Thunderbirds-
12 - 2022-09-2050Canucks-Monsters-
14 - 2022-09-2263Admirals-Monsters-
16 - 2022-09-2482Penguins-Monsters-
17 - 2022-09-2589Monsters-Wolf Pack-
19 - 2022-09-2798Roadrunners-Monsters-
22 - 2022-09-30122Bruins-Monsters-
24 - 2022-10-02139Monsters-Comets-
29 - 2022-10-07174Monsters-Eagles-
30 - 2022-10-08176Eagles-Monsters-
35 - 2022-10-13214Phantoms-Monsters-
37 - 2022-10-15231Monsters-Islanders-
40 - 2022-10-18250Phantoms-Monsters-
42 - 2022-10-20263Rocket-Monsters-
44 - 2022-10-22280Griffins-Monsters-
45 - 2022-10-23289Checkers-Monsters-
48 - 2022-10-26307Rocket-Monsters-
50 - 2022-10-28326Islanders-Monsters-
51 - 2022-10-29338Monsters-Admirals-
53 - 2022-10-31349Silver Knights-Monsters-
57 - 2022-11-04378Monsters-Moose-
59 - 2022-11-06394Griffins-Monsters-
61 - 2022-11-08404Monsters-Penguins-
62 - 2022-11-09412Americans-Monsters-
64 - 2022-11-11424Heat-Monsters-
66 - 2022-11-13443Reign-Monsters-
68 - 2022-11-15455Monsters-Checkers-
70 - 2022-11-17470Monsters-Crunch-
72 - 2022-11-19484Monsters-Bruins-
74 - 2022-11-21502Stars-Monsters-
75 - 2022-11-22510Monsters-Phantoms-
78 - 2022-11-25540Monsters-IceHogs-
82 - 2022-11-29547Americans-Monsters-
84 - 2022-12-01567Monsters-Islanders-
86 - 2022-12-03584IceHogs-Monsters-
89 - 2022-12-06601Monsters-Senators-
91 - 2022-12-08617Bears-Monsters-
93 - 2022-12-10629Wolves-Monsters-
94 - 2022-12-11639Monsters-Bears-
96 - 2022-12-13648Monsters-Crunch-
98 - 2022-12-15662Wolves-Monsters-
100 - 2022-12-17679Monsters-Griffins-
102 - 2022-12-19701Wolf Pack-Monsters-
105 - 2022-12-22717Gulls-Monsters-
107 - 2022-12-24736Barracuda-Monsters-
109 - 2022-12-26754Monsters-Heat-
111 - 2022-12-28768Monsters-Condors-
113 - 2022-12-30787Monsters-Canucks-
114 - 2022-12-31797Monsters-Firebirds-
117 - 2023-01-03804Bears-Monsters-
127 - 2023-01-13829Marlies-Monsters-
128 - 2023-01-14840Monsters-Marlies-
131 - 2023-01-17857Comets-Monsters-
133 - 2023-01-19872Moose-Monsters-
135 - 2023-01-21887Monsters-Stars-
136 - 2023-01-22901Monsters-Roadrunners-
140 - 2023-01-26924Wild-Monsters-
142 - 2023-01-28936Condors-Monsters-
143 - 2023-01-29948Monsters-Wild-
145 - 2023-01-31958Monsters-Americans-
148 - 2023-02-03984Firebirds-Monsters-
149 - 2023-02-04996Monsters-Senators-
152 - 2023-02-071013Monsters-Penguins-
156 - 2023-02-111045Thunderbirds-Monsters-
159 - 2023-02-141074Monsters-Barracuda-
161 - 2023-02-161089Monsters-Reign-
162 - 2023-02-171094Monsters-Gulls-
164 - 2023-02-191110Monsters-Silver Knights-
166 - 2023-02-211121Monsters-Bears-
169 - 2023-02-241147Islanders-Monsters-
170 - 2023-02-251159Monsters-Rocket-
173 - 2023-02-281176Monsters-Wolf Pack-
175 - 2023-03-021189Monsters-Bruins-
177 - 2023-03-041208Checkers-Monsters-
178 - 2023-03-051220Senators-Monsters-
180 - 2023-03-071230Monsters-Marlies-
182 - 2023-03-091243Monsters-Comets-
184 - 2023-03-111264Wolf Pack-Monsters-
187 - 2023-03-141287Monsters-Phantoms-
189 - 2023-03-161303Penguins-Monsters-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
41 0 - 0.00%0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
21,058$ 1,990,000$ 1,990,000$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
10,529$ 21,058$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 187 10,529$ 1,968,923$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
1182451107104525816494412820252213274584117905523126903612725842768521170100771533681177118297964230479811319841313929.77%441663.64%21125199256.48%819149954.64%601109554.89%1845106915277631610795
1182451107104525816494412820252213274584117905523126903612725842768521170100771533681177118297964230479811319841313929.77%441663.64%21125199256.48%819149954.64%601109554.89%1845106915277631610795
Total Saison régulière1649022014208105163281888256404104426414811682341801010462521807225451685413704221402001543067362354236419581284608159622639682627829.77%883263.64%42250398456.48%1638299854.64%1202219054.89%369021383054152732211591
Séries éliminatoires
11191180000052493117400000313018440000021192225288140101520134794276265212417942871243419526.32%60100.00%022845350.33%24747252.33%15126756.55%433257414172353177
11191180000052493117400000313018440000021192225288140101520134794276265212417942871243419526.32%60100.00%022845350.33%24747252.33%15126756.55%433257414172353177
Total Séries éliminatoires382216000001049862214800000626021688000004238444104176280203040268158855253042482158857424868381026.32%120100.00%045690650.33%49494452.33%30253456.55%866515828345707355