Connexion

Islanders
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: Parcels | Morale : 40 | Moyenne d’équipe : 59
Prochain matchs #14 vs Checkers
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Checkers
0-0-0, 0pts
2022-09-15
Islanders
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Gulls
0-0-0, 0pts
2022-09-17
Islanders
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Barracuda
1-0-1, 3pts
2022-09-20
Islanders
0-0-0, 0pts
Statistiques d’équipe
OTL1SéquenceN/A
0-0-1Fiche domicile0-0-0
1-0-0Fiche visiteur0-0-0
1-0-110 derniers matchs0-0-0
2.50Buts par match 0.00
2.00Buts contre par match 0.00
57.14%Pourcentage en avantage numérique0.00%
50.00%Pourcentage en désavantage numérique0.00%
Meneurs d'équipe

Statistiques d’équipe
Buts pour
0
0.00 GFG
Tirs pour
0
0.00 Avg
Pourcentage en avantage numérique
0.0%
0 GF
Début de zone offensive
0.0%
Buts contre
0
0.00 GAA
Tirs contre
0
0.00 Avg
Pourcentage en désavantage numérique
0.0%
0 GA
Début de la zone défensive
0.0%
Information d’équipe

Directeur généralParcels
EntraîneurLuke Richardson
DivisionMetropolitan Division
ConférenceEastern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison0


Information formation

Équipe Pro29
Équipe Mineure19
Limite contact 48 / 90
Espoirs24


Historique d'équipe

Saison actuelle0-0-0 (0PTS)
Historique86-52-26 (0.524%)
Apparitions séries éliminatoires 2
Historique séries éliminatoires (W-L)4-8
Stanley Cup0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Stefan Noesen0X100.00945175618560556940687260666475040630291900,000$
2Jonathan Dahlen (R)0X100.005240886978827261466667656451610406202441,250,000$
3Rocco Grimaldi0X100.005940776476604565656868606462710406002921,100,000$
4Arttu Ruotsalainen0X100.00614277617960576464686360995463040600241925,000$
5Gregory Hofmann (R)0X100.00694488648280515846676064605060040600292750,000$
6Sheldon Rempal0X100.00503675677560476940707059655363040600272900,000$
7Kyle Turris0X100.005743846082724356836258647676820405903321,150,000$
8Dmitrij Jaskin0X100.00994987598884494458625465575770040590292750,000$
9Remi Elie0X100.00985475548760445940636365626273040590271750,000$
10Brett Ritchie0X100.008955805490745451515959606057700405802931,000,000$
11Aleksi Heponiemi0X100.005034766573605060536859606053630405702311,770,000$
12Semyon Der-Arguchintsev (R)0X100.00503575637460296060656162615161040560223850,000$
13JJ Moser (R)0X100.00603888677873637220696873645161040640222925,000$
14Cale Fleury0X100.00915377548760536920666067605467040620232950,000$
15Gabriel Carlsson0X100.005944876085715075206762716156650406202521,000,000$
16Victor Mete0X100.005341916278765466206856755855650406202421,000,000$
17Axel Andersson (R)0X100.00504875548260136720626268615161040560222875,000$
18Kaedan Korczak (R)0X100.00504675528560436720635763595262040560213850,000$
Rayé
1Scott Wilson0X100.00504075597860495840626362625565040570301800,000$
2Cole Cassels0X100.00504975548260485560635762595767040560271750,000$
3Will Bitten0X100.00504675577960465840646062605967040560241925,000$
4Eetu Tuulola0X100.00505675489060395640626162615564040550242750,000$
5Justin Almeida0XXX100.00503675607560385540625962605463040550231925,000$
6Blake Siebenaler0X100.00505475488760346420605868595867040560262800,000$
7Adam Parsells (R)0X100.00504475528660126320605768595060040550251750,000$
MOYENNE D’ÉQUIPE100.0062457959826546624165616463566604059
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Zachary Fucale100.0066726985707068707067697570040690
2Collin Delia100.0063706786676765686764667671040670
Rayé
1Adam Huska100.0060666386656463656561637169040650
2Hunter Jones (R)100.0042605787464744474743456667040520
MOYENNE D’ÉQUIPE100.005867648662626063625961726904063
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Luke Richardson75757575757575CAN538500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantSalaire moyenSalaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Adam HuskaIslanders (NYI)G255/12/1997No198 Lbs6 ft3NoNoNo2Pro & Farm800,000$791,534$800,000$791,534$0$0$No800,000$Lien
Adam ParsellsIslanders (NYI)D251/3/1997Yes195 Lbs6 ft6NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Aleksi HeponiemiIslanders (NYI)C231/9/1999No155 Lbs5 ft10NoNoNo1Pro & Farm1,770,000$1,751,270$1,770,000$1,751,270$0$0$NoLien
Arttu RuotsalainenIslanders (NYI)C2410/29/1997No187 Lbs5 ft9NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLien
Axel AnderssonIslanders (NYI)D222/10/2000Yes192 Lbs6 ft1NoNoNo2Pro & Farm875,000$865,741$875,000$865,741$0$0$No875,000$Lien
Blake SiebenalerIslanders (NYI)D262/27/1996No215 Lbs6 ft1NoNoNo2Pro & Farm800,000$791,534$800,000$791,534$0$0$No800,000$Lien
Brett Ritchie (contrat à 1 volet)Islanders (NYI)RW297/1/1993No220 Lbs6 ft4NoNoNo3Pro & Farm1,000,000$989,418$1,000,000$989,418$0$0$No1,000,000$1,000,000$Lien
Cale FleuryIslanders (NYI)D2311/19/1998No213 Lbs6 ft1NoNoNo2Pro & Farm950,000$939,947$950,000$939,947$0$0$No950,000$Lien
Cole CasselsIslanders (NYI)C275/4/1995No194 Lbs6 ft0NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Collin Delia (contrat à 1 volet)Islanders (NYI)G287/1/1994No207 Lbs6 ft2NoNoNo3Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$750,000$Lien
Dmitrij JaskinIslanders (NYI)RW293/23/1993No216 Lbs6 ft2NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Eetu TuulolaIslanders (NYI)RW243/17/1998No225 Lbs6 ft2NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Gabriel CarlssonIslanders (NYI)D251/2/1997No195 Lbs6 ft5NoNoNo2Pro & Farm1,000,000$989,418$1,000,000$989,418$0$0$No1,000,000$Lien
Gregory HofmannIslanders (NYI)C2911/13/1992Yes194 Lbs6 ft0NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Hunter JonesIslanders (NYI)G227/1/2000Yes194 Lbs6 ft4NoNoNo2Pro & Farm800,000$791,534$800,000$791,534$0$0$No800,000$Lien
JJ MoserIslanders (NYI)D226/6/2000Yes173 Lbs6 ft1NoNoNo2Pro & Farm925,000$915,212$925,000$915,212$0$0$No925,000$Lien
Jonathan Dahlen (contrat à 1 volet)Islanders (NYI)C2412/20/1997Yes180 Lbs5 ft11NoNoNo4Pro & Farm1,250,000$1,236,772$1,250,000$1,236,772$125,000$123,677$No1,250,000$1,250,000$1,250,000$Lien
Justin AlmeidaIslanders (NYI)C/LW/RW232/6/1999No165 Lbs5 ft11NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLien
Kaedan KorczakIslanders (NYI)D211/29/2001Yes202 Lbs6 ft3NoNoNo3Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$850,000$Lien
Kyle Turris (contrat à 1 volet)Islanders (NYI)C338/14/1989No190 Lbs6 ft1NoNoNo2Pro & Farm1,150,000$1,137,831$1,150,000$1,137,831$25,000$24,735$No1,150,000$Lien
Remi ElieIslanders (NYI)LW274/16/1995No215 Lbs6 ft1NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Rocco Grimaldi (contrat à 1 volet)Islanders (NYI)RW292/8/1993No180 Lbs5 ft6NoNoNo2Pro & Farm1,100,000$1,088,360$1,100,000$1,088,360$0$0$No1,100,000$Lien
Scott WilsonIslanders (NYI)LW304/24/1992No180 Lbs5 ft11NoNoNo1Pro & Farm800,000$791,534$800,000$791,534$0$0$NoLien
Semyon Der-ArguchintsevIslanders (NYI)C229/15/2000Yes161 Lbs5 ft11NoNoNo3Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$850,000$Lien
Sheldon RempalIslanders (NYI)RW278/7/1995No165 Lbs5 ft10NoNoNo2Pro & Farm900,000$890,476$900,000$890,476$0$0$No900,000$Lien
Stefan NoesenIslanders (NYI)RW292/12/1993No205 Lbs6 ft1NoNoNo1Pro & Farm900,000$890,476$900,000$890,476$0$0$NoLien
Victor Mete (contrat à 1 volet)Islanders (NYI)D246/7/1998No185 Lbs5 ft9NoNoNo2Pro & Farm1,000,000$989,418$1,000,000$989,418$0$0$No1,000,000$Lien
Will BittenIslanders (NYI)RW247/10/1998No184 Lbs5 ft11NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLien
Zachary Fucale (contrat à 1 volet)Islanders (NYI)G275/28/1995No187 Lbs6 ft2NoNoNo2Pro & Farm1,000,000$989,418$1,000,000$989,418$0$0$No1,000,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2925.62192 Lbs6 ft11.90922,241$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Jonathan DahlenArttu RuotsalainenStefan Noesen40122
2Gregory HofmannAleksi HeponiemiRocco Grimaldi30122
3Dmitrij JaskinKyle TurrisSheldon Rempal20122
4Remi ElieSemyon Der-ArguchintsevBrett Ritchie10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1JJ MoserVictor Mete40122
2Cale FleuryGabriel Carlsson30122
3Kaedan KorczakAxel Andersson20122
4JJ MoserVictor Mete10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Sheldon RempalArttu RuotsalainenStefan Noesen60122
2Gregory HofmannAleksi HeponiemiJonathan Dahlen40122
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1JJ MoserVictor Mete60122
2Cale FleuryGabriel Carlsson40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Kyle TurrisDmitrij Jaskin60122
2Semyon Der-ArguchintsevRemi Elie40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1JJ MoserVictor Mete60122
2Cale FleuryGabriel Carlsson40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Kyle Turris60122JJ MoserVictor Mete60122
2Dmitrij Jaskin40122Cale FleuryGabriel Carlsson40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Arttu RuotsalainenSheldon Rempal60122
2Aleksi HeponiemiStefan Noesen40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1JJ MoserVictor Mete60122
2Cale FleuryGabriel Carlsson40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Remi ElieJonathan DahlenStefan NoesenJJ MoserVictor Mete
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Remi ElieJonathan DahlenStefan NoesenJJ MoserVictor Mete
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Brett Ritchie, Aleksi Heponiemi, Semyon Der-ArguchintsevBrett Ritchie, Aleksi HeponiemiSemyon Der-Arguchintsev
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Kaedan Korczak, Axel Andersson, Cale FleuryKaedan KorczakAxel Andersson, Cale Fleury
Tirs de pénalité
Stefan Noesen, Jonathan Dahlen, Arttu Ruotsalainen, Rocco Grimaldi, Sheldon Rempal
Gardien
#1 : Zachary Fucale, #2 : Collin Delia
Lignes d’attaque personnalisées en prolongation
Arttu Ruotsalainen, Jonathan Dahlen, Rocco Grimaldi, Stefan Noesen, Kyle Turris, Sheldon Rempal, Sheldon Rempal, Aleksi Heponiemi, Gregory Hofmann, ,
Lignes de défense personnalisées en prolongation
JJ Moser, Victor Mete, Cale Fleury, Gabriel Carlsson, Kaedan Korczak


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
00N/A0000000000
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 matchs
WLOTWOTL SOWSOL
000000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
000.00%000.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
00000000
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
000.00%000.00%000.00%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
000000


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
7 - 2022-09-1514Checkers-Islanders-
9 - 2022-09-1732Gulls-Islanders-
12 - 2022-09-2051Barracuda-Islanders-
14 - 2022-09-2266Comets-Islanders-
16 - 2022-09-2481Islanders-Crunch-
17 - 2022-09-2590Islanders-Checkers-
20 - 2022-09-28108Wolf Pack-Islanders-
22 - 2022-09-30124Islanders-Wolves-
23 - 2022-10-01135Eagles-Islanders-
26 - 2022-10-04152Islanders-IceHogs-
28 - 2022-10-06166Islanders-Thunderbirds-
30 - 2022-10-08182Islanders-Griffins-
32 - 2022-10-10193Heat-Islanders-
33 - 2022-10-11198Islanders-Wolf Pack-
35 - 2022-10-13216Roadrunners-Islanders-
37 - 2022-10-15231Monsters-Islanders-
39 - 2022-10-17244Islanders-Senators-
42 - 2022-10-20267Islanders-Admirals-
44 - 2022-10-22284Islanders-Stars-
46 - 2022-10-24295Islanders-Marlies-
48 - 2022-10-26310Condors-Islanders-
50 - 2022-10-28326Islanders-Monsters-
51 - 2022-10-29337Phantoms-Islanders-
54 - 2022-11-01353Islanders-Phantoms-
57 - 2022-11-04377Admirals-Islanders-
59 - 2022-11-06396IceHogs-Islanders-
61 - 2022-11-08407Thunderbirds-Islanders-
64 - 2022-11-11425Islanders-Comets-
65 - 2022-11-12440Wolves-Islanders-
68 - 2022-11-15458Islanders-Bruins-
71 - 2022-11-18483Islanders-Roadrunners-
72 - 2022-11-19494Islanders-Silver Knights-
74 - 2022-11-21506Islanders-Eagles-
77 - 2022-11-24527Islanders-Wolf Pack-
78 - 2022-11-25538Checkers-Islanders-
82 - 2022-11-29550Penguins-Islanders-
84 - 2022-12-01567Monsters-Islanders-
87 - 2022-12-04594Islanders-Firebirds-
89 - 2022-12-06607Islanders-Canucks-
91 - 2022-12-08618Islanders-Condors-
92 - 2022-12-09626Islanders-Heat-
96 - 2022-12-13653Stars-Islanders-
98 - 2022-12-15669Wild-Islanders-
100 - 2022-12-17680Rocket-Islanders-
102 - 2022-12-19702Bears-Islanders-
104 - 2022-12-21713Bruins-Islanders-
105 - 2022-12-22722Islanders-Americans-
107 - 2022-12-24739Wolves-Islanders-
109 - 2022-12-26752Islanders-Marlies-
111 - 2022-12-28766Islanders-Senators-
113 - 2022-12-30780Griffins-Islanders-
114 - 2022-12-31794Silver Knights-Islanders-
123 - 2023-01-09807Islanders-Phantoms-
124 - 2023-01-10816Firebirds-Islanders-
126 - 2023-01-12826Canucks-Islanders-
128 - 2023-01-14835Islanders-Rocket-
131 - 2023-01-17858Senators-Islanders-
134 - 2023-01-20879Penguins-Islanders-
135 - 2023-01-21885Islanders-Bruins-
137 - 2023-01-23906Islanders-Penguins-
139 - 2023-01-25917Moose-Islanders-
141 - 2023-01-27934Reign-Islanders-
143 - 2023-01-29949Islanders-Moose-
145 - 2023-01-31962Islanders-Wild-
149 - 2023-02-04989Griffins-Islanders-
152 - 2023-02-071017Americans-Islanders-
154 - 2023-02-091027Islanders-Penguins-
156 - 2023-02-111048Bears-Islanders-
159 - 2023-02-141075Islanders-Reign-
160 - 2023-02-151079Islanders-Gulls-
163 - 2023-02-181107Islanders-Barracuda-
166 - 2023-02-211127Marlies-Islanders-
169 - 2023-02-241147Islanders-Monsters-
170 - 2023-02-251157Americans-Islanders-
172 - 2023-02-271172Comets-Islanders-
174 - 2023-03-011187Islanders-Bears-
177 - 2023-03-041209Islanders-Crunch-
178 - 2023-03-051219Islanders-Wolves-
182 - 2023-03-091249Crunch-Islanders-
184 - 2023-03-111268Phantoms-Islanders-
186 - 2023-03-131278Islanders-Bears-
188 - 2023-03-151295Rocket-Islanders-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets3515
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
41 0 - 0.00%0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
20,630$ 1,949,500$ 1,949,500$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
10,315$ 20,630$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 187 10,315$ 1,928,905$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
1182302608855182189-74115130354194940411513053148895-799182304486472961791621135617427657824237702101632953132.63%1003763.00%4619138944.56%655153142.78%44699045.05%151669116438381828914
1182302608855182189-74115130354194940411513053148895-799182304486472961791621135617427657824237702101632953132.63%1003763.00%4619138944.56%655153142.78%44699045.05%151669116438381828914
Total Saison régulière1646052016161010364378-148230260610821881880823026010628176190-14198364608972814581221583242261122148415301564846154042032641906232.63%2007463.00%81238277844.56%1310306242.78%892198045.05%303213823286167736561828
Séries éliminatoires
1162400000918-930300000212-10321000007614916250023311846755557276103141353266.67%7357.14%05212142.98%4012631.75%257334.25%115611475811455
1162400000918-930300000212-10321000007614916250023311846755557276103141353266.67%7357.14%05212142.98%4012631.75%257334.25%115611475811455
Total Séries éliminatoires1248000001836-1860600000424-206420000014122818325000466236813411011014552206282706466.67%14657.14%010424242.98%8025231.75%5014634.25%230122294117229110