Connexion

Wolves
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0
GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00%
DG: smartty18 | Morale : 40 | Moyenne d’équipe : 57
Prochain matchs #6 vs Monsters
La résolution de votre navigateur est trop petite pour cette page. Plusieurs informations sont cachées pour garder la page lisible.

Monsters
0-0-0, 0pts
2022-09-14
Wolves
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Wolves
0-0-0, 0pts
2022-09-16
Barracuda
1-0-1, 3pts
Statistiques d’équipe
N/ASéquenceOTL1
0-0-0Fiche domicile0-0-1
0-0-0Fiche visiteur1-0-0
0-0-010 derniers matchs1-0-1
0.00Buts par match 2.50
0.00Buts contre par match 2.00
0.00%Pourcentage en avantage numérique57.14%
0.00%Pourcentage en désavantage numérique50.00%
Wolves
0-0-0, 0pts
2022-09-19
Firebirds
0-0-0, 0pts
Statistiques d’équipe
N/ASéquenceN/A
0-0-0Fiche domicile0-0-0
0-0-0Fiche visiteur0-0-0
0-0-010 derniers matchs0-0-0
0.00Buts par match 0.00
0.00Buts contre par match 0.00
0.00%Pourcentage en avantage numérique0.00%
0.00%Pourcentage en désavantage numérique0.00%
Meneurs d'équipe

Statistiques d’équipe
Buts pour
0
0.00 GFG
Tirs pour
0
0.00 Avg
Pourcentage en avantage numérique
0.0%
0 GF
Début de zone offensive
0.0%
Buts contre
0
0.00 GAA
Tirs contre
0
0.00 Avg
Pourcentage en désavantage numérique
0.0%
0 GA
Début de la zone défensive
0.0%
Information d’équipe

Directeur généralsmartty18
EntraîneurJeff Blashill
DivisionMetropolitan Division
ConférenceEastern Conference
Capitaine
Assistant #1
Assistant #2


Informations de l’aréna

Capacité3,000
Assistance0
Billets de saison0


Information formation

Équipe Pro23
Équipe Mineure18
Limite contact 41 / 90
Espoirs45


Historique d'équipe

Saison actuelle0-0-0 (0PTS)
Historique66-72-24 (0.407%)
Apparitions séries éliminatoires 0
Historique séries éliminatoires (W-L)-
Stanley Cup0


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur #C L R D CON CK FG DI SK ST EN DU PH FO PA SC DF PS EX LD PO MO OV TA SPÂgeContratSalaire moyen
1Anthony Louis0X100.00503675647360446340676462625767040580273750,000$
2Justin Kirkland0X100.00505175558660446140656462625968040580261800,000$
3Morgan Barron0X100.00875079549064525861626261615265040580231925,000$
4Tanner Laczynski0XXX100.00984375598260345954656155615164040570252800,000$
5Ryan MacInnis0X100.00505075548660445860646061606169040570261750,000$
6Tyler Angle (R)0X100.00503875607660495840655962605161040560222925,000$
7Greg Meireles (R)0X100.00504675587960275840665762595161040550231750,000$
8Kyle Topping (R)0XXX100.00504675567960365660645762595262040550222750,000$
9Matt Filipe (R)0X100.00504975538460375340615862595161040540241825,000$
10Reece Newkirk (R)0XXX100.00505175557960275260615662585161040530213750,000$
11Luka Burzan (R)0XXX100.00504175558060295140605762595463040530222750,000$
12Victor Soderstrom0X100.00664180597962456820655968605161040590212925,000$
13Adam Smith0X100.00504575518460466320605768595564040570251750,000$
14Ryan Zuhlsdorf (R)0X100.00504275548060266420615768595463040560252750,000$
15Koletrane Wilson (R)0X100.00505375498760366320605568585161040560231750,000$
16Chris Bigras0X100.00504375558260186720636268615465040560273750,000$
17Matthew Kessel (R)0X100.00504975498860106620635668585462040550222850,000$
18Alex Kannok Leipert (R)0X100.00505075518360196420605768595161040550222850,000$
Rayé
1Alexey Lipanov0XXX100.00504175548060104960585562585262040520231897,167$
MOYENNE D’ÉQUIPE100.0055467555826033603963596460536304056
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien CON SK DU EN SZ AG RB SC HS RT PH PS EX LD PO MO OV TA SP
1Anthony Stolarz100.0079787589848382848381827671040780
2Erik Kallgren (R)100.0065726986696967707067687370040680
Rayé
1Kirill Ustimenko100.0049585586535351545350526867040560
2Colton Point100.0042585589464644464642457068040520
MOYENNE D’ÉQUIPE100.005967648863636164636062726904064
Nom de l’entraîneur PH DF OF PD EX LD PO CNT Âge Contrat Salaire
Jeff Blashill75757575757575USA498500,000$


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du joueur Nom de l’équipePOSGP G A P +/- PIM PIM5 HIT HTT SHT OSB OSM SHT% SB MP AMG PPG PPA PPP PPS PPM PKG PKA PKP PKS PKM GW GT FO% FOT GA TA EG HT P/20 PSG PSS FW FL FT S1 S2 S3
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
# Nom du gardien Nom de l’équipeGP W L OTL PCT GAA MP PIM SO GA SA SAR A EG PS % PSA ST BG S1 S2 S3


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
Nom du joueur Nom de l’équipePOS Âge Date de naissance Nouveau joueur Poids Taille Non-échange Disponible pour échange Ballotage forcé Contrat Type Salaire actuel Salaire restantSalaire moyenSalaire moyen restantPlafond salarial Plafond salarial restant Exclus du plafond salarial Salaire annuel 2Salaire annuel 3Salaire annuel 4Salaire annuel 5Salaire annuel 6Salaire annuel 7Salaire annuel 8Salaire annuel 9Salaire annuel 10Link
Adam SmithWolves (CAR)D2511/6/1996No200 Lbs6 ft1NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Alex Kannok LeipertWolves (CAR)D227/20/2000Yes200 Lbs6 ft0NoNoNo2Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$Lien
Alexey LipanovWolves (CAR)C/LW/RW238/17/1999No182 Lbs6 ft1NoNoNo1Pro & Farm897,167$887,673$897,167$887,673$0$0$NoLien
Anthony LouisWolves (CAR)LW272/10/1995No165 Lbs5 ft7NoNoNo3Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$750,000$Lien
Anthony Stolarz (contrat à 1 volet)Wolves (CAR)G281/20/1994No229 Lbs6 ft5NoNoNo4Pro & Farm2,800,000$2,770,370$2,800,000$2,770,370$1,675,000$1,657,275$No2,800,000$2,800,000$2,800,000$Lien
Chris BigrasWolves (CAR)D272/22/1995No191 Lbs6 ft1NoNoNo3Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$750,000$Lien
Colton PointWolves (CAR)G247/1/1998No229 Lbs6 ft5NoNoNo3Pro & Farm850,000$841,005$0$0$No850,000$850,000$Lien
Erik KallgrenWolves (CAR)G267/1/1996Yes194 Lbs6 ft3NoNoNo1Pro & Farm850,000$841,005$850,000$841,005$0$0$NoLien
Greg MeirelesWolves (CAR)RW231/1/1999Yes182 Lbs5 ft11NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Justin KirklandWolves (CAR)LW268/2/1996No205 Lbs6 ft3NoNoNo1Pro & Farm800,000$791,534$800,000$791,534$0$0$NoLien
Kirill UstimenkoWolves (CAR)G237/1/1999No187 Lbs6 ft3NoNoNo1Pro & Farm700,000$692,593$700,000$692,593$0$0$NoLien
Koletrane WilsonWolves (CAR)D239/1/1999Yes210 Lbs6 ft2NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Kyle ToppingWolves (CAR)C/LW/RW2211/18/1999Yes185 Lbs5 ft11NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Luka BurzanWolves (CAR)C/LW/RW221/7/2000Yes185 Lbs6 ft0NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Matt FilipeWolves (CAR)LW2412/31/1997Yes196 Lbs6 ft2NoNoNo1Pro & Farm825,000$816,270$825,000$816,270$0$0$NoLien
Matthew KesselWolves (CAR)D226/23/2000Yes215 Lbs6 ft3NoNoNo2Pro & Farm850,000$841,005$850,000$841,005$0$0$No850,000$Lien
Morgan BarronWolves (CAR)C2312/2/1998No220 Lbs6 ft4NoNoNo1Pro & Farm925,000$915,212$925,000$915,212$0$0$NoLien
Reece NewkirkWolves (CAR)C/LW/RW212/20/2001Yes182 Lbs5 ft11NoNoNo3Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$750,000$Lien
Ryan MacInnisWolves (CAR)C262/14/1996No201 Lbs6 ft4NoNoNo1Pro & Farm750,000$742,063$750,000$742,063$0$0$NoLien
Ryan ZuhlsdorfWolves (CAR)D257/1/1997Yes187 Lbs5 ft11NoNoNo2Pro & Farm750,000$742,063$750,000$742,063$0$0$No750,000$Lien
Tanner LaczynskiWolves (CAR)C/LW/RW256/1/1997No190 Lbs6 ft1NoNoNo2Pro & Farm800,000$791,534$800,000$791,534$0$0$No800,000$Lien
Tyler AngleWolves (CAR)LW229/30/2000Yes172 Lbs5 ft10NoNoNo2Pro & Farm925,000$915,212$925,000$915,212$0$0$No925,000$Lien
Victor SoderstromWolves (CAR)D212/26/2001No184 Lbs5 ft11NoNoNo2Pro & Farm925,000$915,212$925,000$915,212$0$0$No925,000$Lien
Nombre de joueursÂge moyenPoids moyenTaille moyenneContrat moyenSalaire moyen 1e année
2323.91195 Lbs6 ft11.83891,181$



Attaque à 5 contre 5
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Anthony LouisMorgan BarronJustin Kirkland40122
2Tanner LaczynskiRyan MacInnisTyler Angle30122
3Kyle ToppingGreg MeirelesMatt Filipe20122
4Reece NewkirkLuka BurzanAnthony Louis10122
Défense à 5 contre 5
Ligne #DéfenseDéfense% tempsPHYDFOF
1Victor SoderstromAdam Smith40122
2Ryan ZuhlsdorfChris Bigras30122
3Victor SoderstromKoletrane Wilson20122
4Alex Kannok LeipertKoletrane Wilson10122
Attaque en svantage numérique
Ligne #Ailier gaucheCentreAilier droit% tempsPHYDFOF
1Morgan BarronAnthony LouisJustin Kirkland60122
2Tanner LaczynskiRyan MacInnisTyler Angle40122
Défense en svantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Victor SoderstromAdam Smith60122
2Koletrane WilsonAlex Kannok Leipert40122
Attaque à 4 en désavantage numérique
Ligne #CentreAilier% tempsPHYDFOF
1Anthony LouisJustin Kirkland60122
2Greg MeirelesKyle Topping40122
Défense à 4 en désavantage numérique
Ligne #DéfenseDéfense% tempsPHYDFOF
1Victor SoderstromAdam Smith60122
2Ryan ZuhlsdorfKoletrane Wilson40122
3 joueurs en désavantage numérique
Ligne #Ailier% tempsPHYDFOFDéfenseDéfense% tempsPHYDFOF
1Morgan Barron60122Victor SoderstromAdam Smith60122
2Anthony Louis40122Koletrane WilsonChris Bigras40122
Attaque à 4 contre 4
Ligne #CentreAilier% tempsPHYDFOF
1Anthony LouisMorgan Barron60122
2Justin KirklandMatt Filipe40122
Défense à 4 contre 4
Ligne #DéfenseDéfense% tempsPHYDFOF
1Adam SmithVictor Soderstrom60122
2Chris BigrasRyan Zuhlsdorf40122
Attaque dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Anthony LouisMorgan BarronJustin KirklandVictor SoderstromAdam Smith
Défense dernière minute
Ailier gaucheCentreAilier droitDéfenseDéfense
Anthony LouisMorgan BarronJustin KirklandVictor SoderstromAdam Smith
Attaquants supplémentaires
Normal Avantage numériqueDésavantage numérique
Luka Burzan, Anthony Louis, Morgan BarronJustin Kirkland, Ryan MacInnisReece Newkirk
Défenseurs supplémentaires
Normal Avantage numériqueDésavantage numérique
Adam Smith, Victor Soderstrom, Matthew KesselAdam SmithVictor Soderstrom, Adam Smith
Tirs de pénalité
Luka Burzan, Anthony Louis, Morgan Barron, Justin Kirkland, Ryan MacInnis
Gardien
#1 : Anthony Stolarz, #2 : Erik Kallgren
Lignes d’attaque personnalisées en prolongation
Reece Newkirk, Luka Burzan, Anthony Louis, Morgan Barron, Justin Kirkland, Tanner Laczynski, Tanner Laczynski, Ryan MacInnis, Tyler Angle, Kyle Topping, Greg Meireles
Lignes de défense personnalisées en prolongation
Adam Smith, Alex Kannok Leipert, Matthew Kessel, Chris Bigras, Victor Soderstrom


Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
TotalDomicileVisiteur
# VS Équipe GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P PCT G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Total00000000000000000000000000000000000.000000000000000000000000.00%000.00%0000.00%000.00%000.00%000000

Total pour les joueurs
Matchs jouésPointsSéquenceButsPassesPointsTirs pourTirs contreTirs bloquésMinutes de pénalitésMises en échecButs en filet désertBlanchissages
00N/A0000000000
Tous les matchs
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs locaux
GPWLOTWOTL SOWSOLGFGA
000000000
Matchs extérieurs
GPWLOTWOTL SOWSOLGFGA
000000000
Derniers 10 matchs
WLOTWOTL SOWSOL
000000
Tentatives en avantage numériqueButs en avantage numérique% en avantage numériqueTentatives en désavantage numériqueButs contre en désavantage numérique% en désavantage numériqueButs pour en désavantage numérique
000.00%000.00%0
Tirs en 1e périodeTirs en 2e périodeTirs en 3e périodeTirs en 4e périodeButs en 1e périodeButs en 2e périodeButs en 3e périodeButs en 4e période
00000000
Mises en jeu
Gagnées en zone offensiveTotal en zone offensive% gagnées en zone offensive Gagnées en zone défensiveTotal en zone défensive% gagnées en zone défensiveGagnées en zone neutreTotal en zone neutre% gagnées en zone neutre
000.00%000.00%000.00%
Temps avec la rondelle
En zone offensiveContrôle en zone offensiveEn zone défensiveContrôle en zone défensiveEn zone neutreContrôle en zone neutre
000000


Derniers matchs joués
Astuces sur les filtres (anglais seulement)
PriorityTypeDescription
1| or  OR Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar
2 &&  or  AND Logical "and". Filter the column for content that matches text from either side of the operator.
3/\d/Add any regex to the query to use in the query ("mig" flags can be included /\w/mig)
4< <= >= >Find alphabetical or numerical values less than or greater than or equal to the filtered query
5! or !=Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (=), single (') or double quote (") to exactly not match a filter.
6" or =To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query
7 -  or  to Find a range of values. Make sure there is a space before and after the dash (or the word "to")
8?Wildcard for a single, non-space character.
8*Wildcard for zero or more non-space characters.
9~Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query
10textAny text entered in the filter will match text found within the column
JourMatch Équipe visiteuse Score Équipe locale Score ST OT SO RI Lien
6 - 2022-09-146Monsters-Wolves-
8 - 2022-09-1624Wolves-Barracuda-
11 - 2022-09-1947Wolves-Firebirds-
14 - 2022-09-2269Wolves-Condors-
16 - 2022-09-2486Wolves-Heat-
18 - 2022-09-2697Wolves-Canucks-
22 - 2022-09-30124Islanders-Wolves-
23 - 2022-10-01132Wolves-Phantoms-
25 - 2022-10-03145Bears-Wolves-
28 - 2022-10-06162Wolves-Crunch-
29 - 2022-10-07175Americans-Wolves-
31 - 2022-10-09191Marlies-Wolves-
34 - 2022-10-12207Wolves-Checkers-
35 - 2022-10-13212Condors-Wolves-
37 - 2022-10-15233Wolves-Eagles-
39 - 2022-10-17246Wolves-IceHogs-
42 - 2022-10-20261Eagles-Wolves-
44 - 2022-10-22283Wolves-Wild-
46 - 2022-10-24294Wolves-Moose-
48 - 2022-10-26304Roadrunners-Wolves-
50 - 2022-10-28318Wolves-Bruins-
51 - 2022-10-29333Heat-Wolves-
54 - 2022-11-01352Wolves-Penguins-
56 - 2022-11-03369Wolves-Thunderbirds-
58 - 2022-11-05391Wolves-Reign-
61 - 2022-11-08410Wolves-Gulls-
65 - 2022-11-12440Wolves-Islanders-
68 - 2022-11-15460Wolves-Griffins-
70 - 2022-11-17475Firebirds-Wolves-
72 - 2022-11-19487Stars-Wolves-
73 - 2022-11-20498Penguins-Wolves-
75 - 2022-11-22512Comets-Wolves-
77 - 2022-11-24526Wolves-Penguins-
78 - 2022-11-25535Phantoms-Wolves-
82 - 2022-11-29548IceHogs-Wolves-
85 - 2022-12-02575Checkers-Wolves-
87 - 2022-12-04590Wolves-Comets-
89 - 2022-12-06600Wolves-Wolf Pack-
91 - 2022-12-08614Admirals-Wolves-
93 - 2022-12-10629Wolves-Monsters-
96 - 2022-12-13650Comets-Wolves-
98 - 2022-12-15662Wolves-Monsters-
100 - 2022-12-17682Penguins-Wolves-
101 - 2022-12-18692Canucks-Wolves-
105 - 2022-12-22721Wild-Wolves-
107 - 2022-12-24739Wolves-Islanders-
111 - 2022-12-28769Wolves-Stars-
113 - 2022-12-30783Barracuda-Wolves-
115 - 2023-01-01799Bruins-Wolves-
117 - 2023-01-03802Reign-Wolves-
118 - 2023-01-04805Wolves-Americans-
128 - 2023-01-14841Wolf Pack-Wolves-
131 - 2023-01-17855Wolves-Bears-
133 - 2023-01-19871Rocket-Wolves-
135 - 2023-01-21889Bears-Wolves-
138 - 2023-01-24911Thunderbirds-Wolves-
141 - 2023-01-27933Senators-Wolves-
142 - 2023-01-28939Gulls-Wolves-
146 - 2023-02-01972Wolves-Silver Knights-
148 - 2023-02-03986Wolves-Roadrunners-
150 - 2023-02-051001Crunch-Wolves-
152 - 2023-02-071012Wolves-Rocket-
154 - 2023-02-091030Phantoms-Wolves-
156 - 2023-02-111046Silver Knights-Wolves-
157 - 2023-02-121056Wolves-Comets-
159 - 2023-02-141068Moose-Wolves-
162 - 2023-02-171092Wolves-Marlies-
163 - 2023-02-181099Wolves-Phantoms-
166 - 2023-02-211120Wolves-Wolf Pack-
168 - 2023-02-231138Wolf Pack-Wolves-
170 - 2023-02-251161Marlies-Wolves-
171 - 2023-02-261166Bruins-Wolves-
173 - 2023-02-281179Crunch-Wolves-
175 - 2023-03-021195Wolves-Griffins-
177 - 2023-03-041207Wolves-Rocket-
178 - 2023-03-051219Islanders-Wolves-
180 - 2023-03-071232Senators-Wolves-
182 - 2023-03-091250Wolves-Admirals-
184 - 2023-03-111257Wolves-Americans-
186 - 2023-03-131277Wolves-Senators-
187 - 2023-03-141288Griffins-Wolves-
189 - 2023-03-161299Wolves-Checkers-



Capacité de l’aréna - Tendance du prix des billets - %
Niveau 1Niveau 2
Capacité20001000
Prix des billets350
Assistance0.00%0.00%
Assistance PCT0.00%0.00%

Revenu
Matchs à domicile restantsAssistance moyenne - %Revenu moyen par matchRevenu annuel à ce jourCapacitéPopularité de l’équipe
41 0 - 0.00%0$0$3000100

Dépenses
Dépenses annuelles à ce jourSalaire total des joueursSalaire total moyen des joueursSalaire des entraineurs
18,728$ 1,769,717$ 1,684,717$ 0$
Plafond salarial par jourPlafond salarial à ce jourJoueurs Inclus dans le plafond salarialJoueurs exclut du plafond Salarial
8,914$ 17,828$ 0 0

Estimation
Revenus de la saison estimésJours restants de la saisonDépenses par jourDépenses de la saison estimées
0$ 187 9,364$ 1,751,068$




TotalDomicileVisiteur
Année GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff GP W L T OTW OTL SOW SOL GF GA Diff P G A TP SO EG GP1 GP2 GP3 GP4 SHF SH1 SP2 SP3 SP4 SHA SHB Pim Hit PPA PPG PP% PKA PK GA PK% PK GF W OF FO T OF FO OF FO% W DF FO T DF FO DF FO% W NT FO T NT FO NT FO% PZ DF PZ OF PZ NT PC DF PC OF PC NT
Saison régulière
118218360101152132178-46411518014217189-1841318097316189-2879132218350271249561914343095035776823317432371218823239.02%1063566.98%3530105850.09%733142951.29%42384150.30%1363506165986019641019
118218360101152132178-46411518014217189-1841318097316189-2879132218350271249561914343095035776823317432371218823239.02%1063566.98%3530105850.09%733142951.29%42384150.30%1363506165986019641019
Total Saison régulière164367202022104264356-9282303602842142178-36826360181462122178-561582644367004142498112382868618100611541364662148647424361646439.02%2127066.98%61060211650.09%1466285851.29%846168250.30%272710133318172139292038