Wolves | |
GP: 0 | W: 0 | L: 0 | OTL: 0 | P: 0 GF: 0 | GA: 0 | PP%: 0.00% | PK%: 0.00% DG: smartty18 | Morale : 40 | Moyenne d’équipe : 57 Prochain matchs #6 vs Monsters |
|
|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Nom du joueur | # | C | L | R | D | CON | CK | FG | DI | SK | ST | EN | DU | PH | FO | PA | SC | DF | PS | EX | LD | PO | MO | OV | TA | SP | Âge | Contrat | Salaire moyen |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Anthony Louis | 0 | X | 100.00 | 50 | 36 | 75 | 64 | 73 | 60 | 44 | 63 | 40 | 67 | 64 | 62 | 62 | 57 | 67 | 0 | 40 | 58 | 0 | 27 | 3 | 750,000$ | ||||
2 | Justin Kirkland | 0 | X | 100.00 | 50 | 51 | 75 | 55 | 86 | 60 | 44 | 61 | 40 | 65 | 64 | 62 | 62 | 59 | 68 | 0 | 40 | 58 | 0 | 26 | 1 | 800,000$ | ||||
3 | Morgan Barron | 0 | X | 100.00 | 87 | 50 | 79 | 54 | 90 | 64 | 52 | 58 | 61 | 62 | 62 | 61 | 61 | 52 | 65 | 0 | 40 | 58 | 0 | 23 | 1 | 925,000$ | ||||
4 | Tanner Laczynski | 0 | X | X | X | 100.00 | 98 | 43 | 75 | 59 | 82 | 60 | 34 | 59 | 54 | 65 | 61 | 55 | 61 | 51 | 64 | 0 | 40 | 57 | 0 | 25 | 2 | 800,000$ | ||
5 | Ryan MacInnis | 0 | X | 100.00 | 50 | 50 | 75 | 54 | 86 | 60 | 44 | 58 | 60 | 64 | 60 | 61 | 60 | 61 | 69 | 0 | 40 | 57 | 0 | 26 | 1 | 750,000$ | ||||
6 | Tyler Angle (R) | 0 | X | 100.00 | 50 | 38 | 75 | 60 | 76 | 60 | 49 | 58 | 40 | 65 | 59 | 62 | 60 | 51 | 61 | 0 | 40 | 56 | 0 | 22 | 2 | 925,000$ | ||||
7 | Greg Meireles (R) | 0 | X | 100.00 | 50 | 46 | 75 | 58 | 79 | 60 | 27 | 58 | 40 | 66 | 57 | 62 | 59 | 51 | 61 | 0 | 40 | 55 | 0 | 23 | 1 | 750,000$ | ||||
8 | Kyle Topping (R) | 0 | X | X | X | 100.00 | 50 | 46 | 75 | 56 | 79 | 60 | 36 | 56 | 60 | 64 | 57 | 62 | 59 | 52 | 62 | 0 | 40 | 55 | 0 | 22 | 2 | 750,000$ | ||
9 | Matt Filipe (R) | 0 | X | 100.00 | 50 | 49 | 75 | 53 | 84 | 60 | 37 | 53 | 40 | 61 | 58 | 62 | 59 | 51 | 61 | 0 | 40 | 54 | 0 | 24 | 1 | 825,000$ | ||||
10 | Reece Newkirk (R) | 0 | X | X | X | 100.00 | 50 | 51 | 75 | 55 | 79 | 60 | 27 | 52 | 60 | 61 | 56 | 62 | 58 | 51 | 61 | 0 | 40 | 53 | 0 | 21 | 3 | 750,000$ | ||
11 | Luka Burzan (R) | 0 | X | X | X | 100.00 | 50 | 41 | 75 | 55 | 80 | 60 | 29 | 51 | 40 | 60 | 57 | 62 | 59 | 54 | 63 | 0 | 40 | 53 | 0 | 22 | 2 | 750,000$ | ||
12 | Victor Soderstrom | 0 | X | 100.00 | 66 | 41 | 80 | 59 | 79 | 62 | 45 | 68 | 20 | 65 | 59 | 68 | 60 | 51 | 61 | 0 | 40 | 59 | 0 | 21 | 2 | 925,000$ | ||||
13 | Adam Smith | 0 | X | 100.00 | 50 | 45 | 75 | 51 | 84 | 60 | 46 | 63 | 20 | 60 | 57 | 68 | 59 | 55 | 64 | 0 | 40 | 57 | 0 | 25 | 1 | 750,000$ | ||||
14 | Ryan Zuhlsdorf (R) | 0 | X | 100.00 | 50 | 42 | 75 | 54 | 80 | 60 | 26 | 64 | 20 | 61 | 57 | 68 | 59 | 54 | 63 | 0 | 40 | 56 | 0 | 25 | 2 | 750,000$ | ||||
15 | Koletrane Wilson (R) | 0 | X | 100.00 | 50 | 53 | 75 | 49 | 87 | 60 | 36 | 63 | 20 | 60 | 55 | 68 | 58 | 51 | 61 | 0 | 40 | 56 | 0 | 23 | 1 | 750,000$ | ||||
16 | Chris Bigras | 0 | X | 100.00 | 50 | 43 | 75 | 55 | 82 | 60 | 18 | 67 | 20 | 63 | 62 | 68 | 61 | 54 | 65 | 0 | 40 | 56 | 0 | 27 | 3 | 750,000$ | ||||
17 | Matthew Kessel (R) | 0 | X | 100.00 | 50 | 49 | 75 | 49 | 88 | 60 | 10 | 66 | 20 | 63 | 56 | 68 | 58 | 54 | 62 | 0 | 40 | 55 | 0 | 22 | 2 | 850,000$ | ||||
18 | Alex Kannok Leipert (R) | 0 | X | 100.00 | 50 | 50 | 75 | 51 | 83 | 60 | 19 | 64 | 20 | 60 | 57 | 68 | 59 | 51 | 61 | 0 | 40 | 55 | 0 | 22 | 2 | 850,000$ | ||||
Rayé | ||||||||||||||||||||||||||||||
1 | Alexey Lipanov | 0 | X | X | X | 100.00 | 50 | 41 | 75 | 54 | 80 | 60 | 10 | 49 | 60 | 58 | 55 | 62 | 58 | 52 | 62 | 0 | 40 | 52 | 0 | 23 | 1 | 897,167$ | ||
MOYENNE D’ÉQUIPE | 100.00 | 55 | 46 | 75 | 55 | 82 | 60 | 33 | 60 | 39 | 63 | 59 | 64 | 60 | 53 | 63 | 0 | 40 | 56 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Nom du gardien | CON | SK | DU | EN | SZ | AG | RB | SC | HS | RT | PH | PS | EX | LD | PO | MO | OV | TA | SP |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
1 | Anthony Stolarz | 100.00 | 79 | 78 | 75 | 89 | 84 | 83 | 82 | 84 | 83 | 81 | 82 | 76 | 71 | 0 | 40 | 78 | 0 | |
2 | Erik Kallgren (R) | 100.00 | 65 | 72 | 69 | 86 | 69 | 69 | 67 | 70 | 70 | 67 | 68 | 73 | 70 | 0 | 40 | 68 | 0 | |
Rayé | ||||||||||||||||||||
1 | Kirill Ustimenko | 100.00 | 49 | 58 | 55 | 86 | 53 | 53 | 51 | 54 | 53 | 50 | 52 | 68 | 67 | 0 | 40 | 56 | 0 | |
2 | Colton Point | 100.00 | 42 | 58 | 55 | 89 | 46 | 46 | 44 | 46 | 46 | 42 | 45 | 70 | 68 | 0 | 40 | 52 | 0 | |
MOYENNE D’ÉQUIPE | 100.00 | 59 | 67 | 64 | 88 | 63 | 63 | 61 | 64 | 63 | 60 | 62 | 72 | 69 | 0 | 40 | 64 |
Nom de l’entraîneur | PH | DF | OF | PD | EX | LD | PO | CNT | Âge | Contrat | Salaire |
---|---|---|---|---|---|---|---|---|---|---|---|
Jeff Blashill | 75 | 75 | 75 | 75 | 75 | 75 | 75 | USA | 49 | 8 | 500,000$ |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Nom du joueur | Nom de l’équipe | POS | GP | G | A | P | +/- | PIM | PIM5 | HIT | HTT | SHT | OSB | OSM | SHT% | SB | MP | AMG | PPG | PPA | PPP | PPS | PPM | PKG | PKA | PKP | PKS | PKM | GW | GT | FO% | FOT | GA | TA | EG | HT | P/20 | PSG | PSS | FW | FL | FT | S1 | S2 | S3 |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
# | Nom du gardien | Nom de l’équipe | GP | W | L | OTL | PCT | GAA | MP | PIM | SO | GA | SA | SAR | A | EG | PS % | PSA | ST | BG | S1 | S2 | S3 |
---|
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Nom du joueur | Nom de l’équipe | POS | Âge | Date de naissance | Nouveau joueur | Poids | Taille | Non-échange | Disponible pour échange | Ballotage forcé | Contrat | Type | Salaire actuel | Salaire restant | Salaire moyen | Salaire moyen restant | Plafond salarial | Plafond salarial restant | Exclus du plafond salarial | Salaire annuel 2 | Salaire annuel 3 | Salaire annuel 4 | Salaire annuel 5 | Salaire annuel 6 | Salaire annuel 7 | Salaire annuel 8 | Salaire annuel 9 | Salaire annuel 10 | Link |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Adam Smith | Wolves (CAR) | D | 25 | 11/6/1996 | No | 200 Lbs | 6 ft1 | No | No | No | 1 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | Lien | |||||||||
Alex Kannok Leipert | Wolves (CAR) | D | 22 | 7/20/2000 | Yes | 200 Lbs | 6 ft0 | No | No | No | 2 | Pro & Farm | 850,000$ | 841,005$ | 850,000$ | 841,005$ | 0$ | 0$ | No | 850,000$ | Lien | ||||||||
Alexey Lipanov | Wolves (CAR) | C/LW/RW | 23 | 8/17/1999 | No | 182 Lbs | 6 ft1 | No | No | No | 1 | Pro & Farm | 897,167$ | 887,673$ | 897,167$ | 887,673$ | 0$ | 0$ | No | Lien | |||||||||
Anthony Louis | Wolves (CAR) | LW | 27 | 2/10/1995 | No | 165 Lbs | 5 ft7 | No | No | No | 3 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | 750,000$ | 750,000$ | Lien | |||||||
Anthony Stolarz (contrat à 1 volet) | Wolves (CAR) | G | 28 | 1/20/1994 | No | 229 Lbs | 6 ft5 | No | No | No | 4 | Pro & Farm | 2,800,000$ | 2,770,370$ | 2,800,000$ | 2,770,370$ | 1,675,000$ | 1,657,275$ | No | 2,800,000$ | 2,800,000$ | 2,800,000$ | Lien | ||||||
Chris Bigras | Wolves (CAR) | D | 27 | 2/22/1995 | No | 191 Lbs | 6 ft1 | No | No | No | 3 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | 750,000$ | 750,000$ | Lien | |||||||
Colton Point | Wolves (CAR) | G | 24 | 7/1/1998 | No | 229 Lbs | 6 ft5 | No | No | No | 3 | Pro & Farm | 850,000$ | 841,005$ | 0$ | 0$ | No | 850,000$ | 850,000$ | Lien | |||||||||
Erik Kallgren | Wolves (CAR) | G | 26 | 7/1/1996 | Yes | 194 Lbs | 6 ft3 | No | No | No | 1 | Pro & Farm | 850,000$ | 841,005$ | 850,000$ | 841,005$ | 0$ | 0$ | No | Lien | |||||||||
Greg Meireles | Wolves (CAR) | RW | 23 | 1/1/1999 | Yes | 182 Lbs | 5 ft11 | No | No | No | 1 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | Lien | |||||||||
Justin Kirkland | Wolves (CAR) | LW | 26 | 8/2/1996 | No | 205 Lbs | 6 ft3 | No | No | No | 1 | Pro & Farm | 800,000$ | 791,534$ | 800,000$ | 791,534$ | 0$ | 0$ | No | Lien | |||||||||
Kirill Ustimenko | Wolves (CAR) | G | 23 | 7/1/1999 | No | 187 Lbs | 6 ft3 | No | No | No | 1 | Pro & Farm | 700,000$ | 692,593$ | 700,000$ | 692,593$ | 0$ | 0$ | No | Lien | |||||||||
Koletrane Wilson | Wolves (CAR) | D | 23 | 9/1/1999 | Yes | 210 Lbs | 6 ft2 | No | No | No | 1 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | Lien | |||||||||
Kyle Topping | Wolves (CAR) | C/LW/RW | 22 | 11/18/1999 | Yes | 185 Lbs | 5 ft11 | No | No | No | 2 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | 750,000$ | Lien | ||||||||
Luka Burzan | Wolves (CAR) | C/LW/RW | 22 | 1/7/2000 | Yes | 185 Lbs | 6 ft0 | No | No | No | 2 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | 750,000$ | Lien | ||||||||
Matt Filipe | Wolves (CAR) | LW | 24 | 12/31/1997 | Yes | 196 Lbs | 6 ft2 | No | No | No | 1 | Pro & Farm | 825,000$ | 816,270$ | 825,000$ | 816,270$ | 0$ | 0$ | No | Lien | |||||||||
Matthew Kessel | Wolves (CAR) | D | 22 | 6/23/2000 | Yes | 215 Lbs | 6 ft3 | No | No | No | 2 | Pro & Farm | 850,000$ | 841,005$ | 850,000$ | 841,005$ | 0$ | 0$ | No | 850,000$ | Lien | ||||||||
Morgan Barron | Wolves (CAR) | C | 23 | 12/2/1998 | No | 220 Lbs | 6 ft4 | No | No | No | 1 | Pro & Farm | 925,000$ | 915,212$ | 925,000$ | 915,212$ | 0$ | 0$ | No | Lien | |||||||||
Reece Newkirk | Wolves (CAR) | C/LW/RW | 21 | 2/20/2001 | Yes | 182 Lbs | 5 ft11 | No | No | No | 3 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | 750,000$ | 750,000$ | Lien | |||||||
Ryan MacInnis | Wolves (CAR) | C | 26 | 2/14/1996 | No | 201 Lbs | 6 ft4 | No | No | No | 1 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | Lien | |||||||||
Ryan Zuhlsdorf | Wolves (CAR) | D | 25 | 7/1/1997 | Yes | 187 Lbs | 5 ft11 | No | No | No | 2 | Pro & Farm | 750,000$ | 742,063$ | 750,000$ | 742,063$ | 0$ | 0$ | No | 750,000$ | Lien | ||||||||
Tanner Laczynski | Wolves (CAR) | C/LW/RW | 25 | 6/1/1997 | No | 190 Lbs | 6 ft1 | No | No | No | 2 | Pro & Farm | 800,000$ | 791,534$ | 800,000$ | 791,534$ | 0$ | 0$ | No | 800,000$ | Lien | ||||||||
Tyler Angle | Wolves (CAR) | LW | 22 | 9/30/2000 | Yes | 172 Lbs | 5 ft10 | No | No | No | 2 | Pro & Farm | 925,000$ | 915,212$ | 925,000$ | 915,212$ | 0$ | 0$ | No | 925,000$ | Lien | ||||||||
Victor Soderstrom | Wolves (CAR) | D | 21 | 2/26/2001 | No | 184 Lbs | 5 ft11 | No | No | No | 2 | Pro & Farm | 925,000$ | 915,212$ | 925,000$ | 915,212$ | 0$ | 0$ | No | 925,000$ | Lien |
Nombre de joueurs | Âge moyen | Poids moyen | Taille moyenne | Contrat moyen | Salaire moyen 1e année |
---|---|---|---|---|---|
23 | 23.91 | 195 Lbs | 6 ft1 | 1.83 | 891,181$ |
Attaque à 5 contre 5 | |||||||
---|---|---|---|---|---|---|---|
Ligne # | Ailier gauche | Centre | Ailier droit | % temps | PHY | DF | OF |
1 | Anthony Louis | Morgan Barron | Justin Kirkland | 40 | 1 | 2 | 2 |
2 | Tanner Laczynski | Ryan MacInnis | Tyler Angle | 30 | 1 | 2 | 2 |
3 | Kyle Topping | Greg Meireles | Matt Filipe | 20 | 1 | 2 | 2 |
4 | Reece Newkirk | Luka Burzan | Anthony Louis | 10 | 1 | 2 | 2 |
Défense à 5 contre 5 | |||||||
---|---|---|---|---|---|---|---|
Ligne # | Défense | Défense | % temps | PHY | DF | OF | |
1 | Victor Soderstrom | Adam Smith | 40 | 1 | 2 | 2 | |
2 | Ryan Zuhlsdorf | Chris Bigras | 30 | 1 | 2 | 2 | |
3 | Victor Soderstrom | Koletrane Wilson | 20 | 1 | 2 | 2 | |
4 | Alex Kannok Leipert | Koletrane Wilson | 10 | 1 | 2 | 2 |
Attaque en svantage numérique | |||||||
---|---|---|---|---|---|---|---|
Ligne # | Ailier gauche | Centre | Ailier droit | % temps | PHY | DF | OF |
1 | Morgan Barron | Anthony Louis | Justin Kirkland | 60 | 1 | 2 | 2 |
2 | Tanner Laczynski | Ryan MacInnis | Tyler Angle | 40 | 1 | 2 | 2 |
Défense en svantage numérique | |||||||
---|---|---|---|---|---|---|---|
Ligne # | Défense | Défense | % temps | PHY | DF | OF | |
1 | Victor Soderstrom | Adam Smith | 60 | 1 | 2 | 2 | |
2 | Koletrane Wilson | Alex Kannok Leipert | 40 | 1 | 2 | 2 |
Attaque à 4 en désavantage numérique | ||||||
---|---|---|---|---|---|---|
Ligne # | Centre | Ailier | % temps | PHY | DF | OF |
1 | Anthony Louis | Justin Kirkland | 60 | 1 | 2 | 2 |
2 | Greg Meireles | Kyle Topping | 40 | 1 | 2 | 2 |
Défense à 4 en désavantage numérique | ||||||
---|---|---|---|---|---|---|
Ligne # | Défense | Défense | % temps | PHY | DF | OF |
1 | Victor Soderstrom | Adam Smith | 60 | 1 | 2 | 2 |
2 | Ryan Zuhlsdorf | Koletrane Wilson | 40 | 1 | 2 | 2 |
3 joueurs en désavantage numérique | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Ligne # | Ailier | % temps | PHY | DF | OF | Défense | Défense | % temps | PHY | DF | OF |
1 | Morgan Barron | 60 | 1 | 2 | 2 | Victor Soderstrom | Adam Smith | 60 | 1 | 2 | 2 |
2 | Anthony Louis | 40 | 1 | 2 | 2 | Koletrane Wilson | Chris Bigras | 40 | 1 | 2 | 2 |
Attaque à 4 contre 4 | ||||||
---|---|---|---|---|---|---|
Ligne # | Centre | Ailier | % temps | PHY | DF | OF |
1 | Anthony Louis | Morgan Barron | 60 | 1 | 2 | 2 |
2 | Justin Kirkland | Matt Filipe | 40 | 1 | 2 | 2 |
Défense à 4 contre 4 | ||||||
---|---|---|---|---|---|---|
Ligne # | Défense | Défense | % temps | PHY | DF | OF |
1 | Adam Smith | Victor Soderstrom | 60 | 1 | 2 | 2 |
2 | Chris Bigras | Ryan Zuhlsdorf | 40 | 1 | 2 | 2 |
Attaque dernière minute | ||||
---|---|---|---|---|
Ailier gauche | Centre | Ailier droit | Défense | Défense |
Anthony Louis | Morgan Barron | Justin Kirkland | Victor Soderstrom | Adam Smith |
Défense dernière minute | ||||
---|---|---|---|---|
Ailier gauche | Centre | Ailier droit | Défense | Défense |
Anthony Louis | Morgan Barron | Justin Kirkland | Victor Soderstrom | Adam Smith |
Attaquants supplémentaires | ||
---|---|---|
Normal | Avantage numérique | Désavantage numérique |
Luka Burzan, Anthony Louis, Morgan Barron | Justin Kirkland, Ryan MacInnis | Reece Newkirk |
Défenseurs supplémentaires | ||
---|---|---|
Normal | Avantage numérique | Désavantage numérique |
Adam Smith, Victor Soderstrom, Matthew Kessel | Adam Smith | Victor Soderstrom, Adam Smith |
Tirs de pénalité |
---|
Luka Burzan, Anthony Louis, Morgan Barron, Justin Kirkland, Ryan MacInnis |
Gardien |
---|
#1 : Anthony Stolarz, #2 : Erik Kallgren |
Lignes d’attaque personnalisées en prolongation |
---|
Reece Newkirk, Luka Burzan, Anthony Louis, Morgan Barron, Justin Kirkland, Tanner Laczynski, Tanner Laczynski, Ryan MacInnis, Tyler Angle, Kyle Topping, Greg Meireles |
Lignes de défense personnalisées en prolongation |
---|
Adam Smith, Alex Kannok Leipert, Matthew Kessel, Chris Bigras, Victor Soderstrom |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Total | Domicile | Visiteur | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
# | VS Équipe | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | P | PCT | G | A | TP | SO | EG | GP1 | GP2 | GP3 | GP4 | SHF | SH1 | SP2 | SP3 | SP4 | SHA | SHB | Pim | Hit | PPA | PPG | PP% | PKA | PK GA | PK% | PK GF | W OF FO | T OF FO | OF FO% | W DF FO | T DF FO | DF FO% | W NT FO | T NT FO | NT FO% | PZ DF | PZ OF | PZ NT | PC DF | PC OF | PC NT |
Total | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.000 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0 | 0 | 0 | 0 |
Total pour les joueurs | ||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Matchs joués | Points | Séquence | Buts | Passes | Points | Tirs pour | Tirs contre | Tirs bloqués | Minutes de pénalités | Mises en échec | Buts en filet désert | Blanchissages |
0 | 0 | N/A | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Tous les matchs | ||||||||
---|---|---|---|---|---|---|---|---|
GP | W | L | OTW | OTL | SOW | SOL | GF | GA |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Matchs locaux | ||||||||
---|---|---|---|---|---|---|---|---|
GP | W | L | OTW | OTL | SOW | SOL | GF | GA |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Matchs extérieurs | ||||||||
---|---|---|---|---|---|---|---|---|
GP | W | L | OTW | OTL | SOW | SOL | GF | GA |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Derniers 10 matchs | |||||
---|---|---|---|---|---|
W | L | OTW | OTL | SOW | SOL |
0 | 0 | 0 | 0 | 0 | 0 |
Tentatives en avantage numérique | Buts en avantage numérique | % en avantage numérique | Tentatives en désavantage numérique | Buts contre en désavantage numérique | % en désavantage numérique | Buts pour en désavantage numérique |
---|---|---|---|---|---|---|
0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 |
Tirs en 1e période | Tirs en 2e période | Tirs en 3e période | Tirs en 4e période | Buts en 1e période | Buts en 2e période | Buts en 3e période | Buts en 4e période |
---|---|---|---|---|---|---|---|
0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
Mises en jeu | ||||||||
---|---|---|---|---|---|---|---|---|
Gagnées en zone offensive | Total en zone offensive | % gagnées en zone offensive | Gagnées en zone défensive | Total en zone défensive | % gagnées en zone défensive | Gagnées en zone neutre | Total en zone neutre | % gagnées en zone neutre |
0 | 0 | 0.00% | 0 | 0 | 0.00% | 0 | 0 | 0.00% |
Temps avec la rondelle | |||||
---|---|---|---|---|---|
En zone offensive | Contrôle en zone offensive | En zone défensive | Contrôle en zone défensive | En zone neutre | Contrôle en zone neutre |
0 | 0 | 0 | 0 | 0 | 0 |
Priority | Type | Description |
---|---|---|
1 | | or OR | Logical "or" (Vertical bar). Filter the column for content that matches text from either side of the bar |
2 | && or AND | Logical "and". Filter the column for content that matches text from either side of the operator. |
3 | /\d/ | Add any regex to the query to use in the query ("mig" flags can be included /\w/mig ) |
4 | < <= >= > | Find alphabetical or numerical values less than or greater than or equal to the filtered query |
5 | ! or != | Not operator, or not exactly match. Filter the column with content that do not match the query. Include an equal (= ), single (' ) or double quote (" ) to exactly not match a filter. |
6 | " or = | To exactly match the search query, add a quote, apostrophe or equal sign to the beginning and/or end of the query |
7 | - or to | Find a range of values. Make sure there is a space before and after the dash (or the word "to") |
8 | ? | Wildcard for a single, non-space character. |
8 | * | Wildcard for zero or more non-space characters. |
9 | ~ | Perform a fuzzy search (matches sequential characters) by adding a tilde to the beginning of the query |
10 | text | Any text entered in the filter will match text found within the column |
Jour | Match | Équipe visiteuse | Score | Équipe locale | Score | ST | OT | SO | RI | Lien |
---|---|---|---|---|---|---|---|---|---|---|
6 - 2022-09-14 | 6 | Monsters | - | Wolves | - | |||||
8 - 2022-09-16 | 24 | Wolves | - | Barracuda | - | |||||
11 - 2022-09-19 | 47 | Wolves | - | Firebirds | - | |||||
14 - 2022-09-22 | 69 | Wolves | - | Condors | - | |||||
16 - 2022-09-24 | 86 | Wolves | - | Heat | - | |||||
18 - 2022-09-26 | 97 | Wolves | - | Canucks | - | |||||
22 - 2022-09-30 | 124 | Islanders | - | Wolves | - | |||||
23 - 2022-10-01 | 132 | Wolves | - | Phantoms | - | |||||
25 - 2022-10-03 | 145 | Bears | - | Wolves | - | |||||
28 - 2022-10-06 | 162 | Wolves | - | Crunch | - | |||||
29 - 2022-10-07 | 175 | Americans | - | Wolves | - | |||||
31 - 2022-10-09 | 191 | Marlies | - | Wolves | - | |||||
34 - 2022-10-12 | 207 | Wolves | - | Checkers | - | |||||
35 - 2022-10-13 | 212 | Condors | - | Wolves | - | |||||
37 - 2022-10-15 | 233 | Wolves | - | Eagles | - | |||||
39 - 2022-10-17 | 246 | Wolves | - | IceHogs | - | |||||
42 - 2022-10-20 | 261 | Eagles | - | Wolves | - | |||||
44 - 2022-10-22 | 283 | Wolves | - | Wild | - | |||||
46 - 2022-10-24 | 294 | Wolves | - | Moose | - | |||||
48 - 2022-10-26 | 304 | Roadrunners | - | Wolves | - | |||||
50 - 2022-10-28 | 318 | Wolves | - | Bruins | - | |||||
51 - 2022-10-29 | 333 | Heat | - | Wolves | - | |||||
54 - 2022-11-01 | 352 | Wolves | - | Penguins | - | |||||
56 - 2022-11-03 | 369 | Wolves | - | Thunderbirds | - | |||||
58 - 2022-11-05 | 391 | Wolves | - | Reign | - | |||||
61 - 2022-11-08 | 410 | Wolves | - | Gulls | - | |||||
65 - 2022-11-12 | 440 | Wolves | - | Islanders | - | |||||
68 - 2022-11-15 | 460 | Wolves | - | Griffins | - | |||||
70 - 2022-11-17 | 475 | Firebirds | - | Wolves | - | |||||
72 - 2022-11-19 | 487 | Stars | - | Wolves | - | |||||
73 - 2022-11-20 | 498 | Penguins | - | Wolves | - | |||||
75 - 2022-11-22 | 512 | Comets | - | Wolves | - | |||||
77 - 2022-11-24 | 526 | Wolves | - | Penguins | - | |||||
78 - 2022-11-25 | 535 | Phantoms | - | Wolves | - | |||||
82 - 2022-11-29 | 548 | IceHogs | - | Wolves | - | |||||
85 - 2022-12-02 | 575 | Checkers | - | Wolves | - | |||||
87 - 2022-12-04 | 590 | Wolves | - | Comets | - | |||||
89 - 2022-12-06 | 600 | Wolves | - | Wolf Pack | - | |||||
91 - 2022-12-08 | 614 | Admirals | - | Wolves | - | |||||
93 - 2022-12-10 | 629 | Wolves | - | Monsters | - | |||||
96 - 2022-12-13 | 650 | Comets | - | Wolves | - | |||||
98 - 2022-12-15 | 662 | Wolves | - | Monsters | - | |||||
100 - 2022-12-17 | 682 | Penguins | - | Wolves | - | |||||
101 - 2022-12-18 | 692 | Canucks | - | Wolves | - | |||||
105 - 2022-12-22 | 721 | Wild | - | Wolves | - | |||||
107 - 2022-12-24 | 739 | Wolves | - | Islanders | - | |||||
111 - 2022-12-28 | 769 | Wolves | - | Stars | - | |||||
113 - 2022-12-30 | 783 | Barracuda | - | Wolves | - | |||||
115 - 2023-01-01 | 799 | Bruins | - | Wolves | - | |||||
117 - 2023-01-03 | 802 | Reign | - | Wolves | - | |||||
118 - 2023-01-04 | 805 | Wolves | - | Americans | - | |||||
128 - 2023-01-14 | 841 | Wolf Pack | - | Wolves | - | |||||
131 - 2023-01-17 | 855 | Wolves | - | Bears | - | |||||
133 - 2023-01-19 | 871 | Rocket | - | Wolves | - | |||||
135 - 2023-01-21 | 889 | Bears | - | Wolves | - | |||||
138 - 2023-01-24 | 911 | Thunderbirds | - | Wolves | - | |||||
141 - 2023-01-27 | 933 | Senators | - | Wolves | - | |||||
142 - 2023-01-28 | 939 | Gulls | - | Wolves | - | |||||
146 - 2023-02-01 | 972 | Wolves | - | Silver Knights | - | |||||
148 - 2023-02-03 | 986 | Wolves | - | Roadrunners | - | |||||
150 - 2023-02-05 | 1001 | Crunch | - | Wolves | - | |||||
152 - 2023-02-07 | 1012 | Wolves | - | Rocket | - | |||||
154 - 2023-02-09 | 1030 | Phantoms | - | Wolves | - | |||||
156 - 2023-02-11 | 1046 | Silver Knights | - | Wolves | - | |||||
157 - 2023-02-12 | 1056 | Wolves | - | Comets | - | |||||
159 - 2023-02-14 | 1068 | Moose | - | Wolves | - | |||||
162 - 2023-02-17 | 1092 | Wolves | - | Marlies | - | |||||
163 - 2023-02-18 | 1099 | Wolves | - | Phantoms | - | |||||
166 - 2023-02-21 | 1120 | Wolves | - | Wolf Pack | - | |||||
168 - 2023-02-23 | 1138 | Wolf Pack | - | Wolves | - | |||||
170 - 2023-02-25 | 1161 | Marlies | - | Wolves | - | |||||
171 - 2023-02-26 | 1166 | Bruins | - | Wolves | - | |||||
173 - 2023-02-28 | 1179 | Crunch | - | Wolves | - | |||||
175 - 2023-03-02 | 1195 | Wolves | - | Griffins | - | |||||
177 - 2023-03-04 | 1207 | Wolves | - | Rocket | - | |||||
178 - 2023-03-05 | 1219 | Islanders | - | Wolves | - | |||||
180 - 2023-03-07 | 1232 | Senators | - | Wolves | - | |||||
182 - 2023-03-09 | 1250 | Wolves | - | Admirals | - | |||||
184 - 2023-03-11 | 1257 | Wolves | - | Americans | - | |||||
186 - 2023-03-13 | 1277 | Wolves | - | Senators | - | |||||
187 - 2023-03-14 | 1288 | Griffins | - | Wolves | - | |||||
189 - 2023-03-16 | 1299 | Wolves | - | Checkers | - |
Capacité de l’aréna - Tendance du prix des billets - % | ||
---|---|---|
Niveau 1 | Niveau 2 | |
Capacité | 2000 | 1000 |
Prix des billets | 35 | 0 |
Assistance | 0.00% | 0.00% |
Assistance PCT | 0.00% | 0.00% |
Revenu | |||||
---|---|---|---|---|---|
Matchs à domicile restants | Assistance moyenne - % | Revenu moyen par match | Revenu annuel à ce jour | Capacité | Popularité de l’équipe |
41 | 0 - 0.00% | 0$ | 0$ | 3000 | 100 |
Dépenses | |||
---|---|---|---|
Dépenses annuelles à ce jour | Salaire total des joueurs | Salaire total moyen des joueurs | Salaire des entraineurs |
18,728$ | 1,769,717$ | 1,684,717$ | 0$ |
Plafond salarial par jour | Plafond salarial à ce jour | Joueurs Inclus dans le plafond salarial | Joueurs exclut du plafond Salarial |
---|---|---|---|
8,914$ | 17,828$ | 0 | 0 |
Estimation | |||
---|---|---|---|
Revenus de la saison estimés | Jours restants de la saison | Dépenses par jour | Dépenses de la saison estimées |
0$ | 187 | 9,364$ | 1,751,068$ |
Total | Domicile | Visiteur | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Année | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | GP | W | L | T | OTW | OTL | SOW | SOL | GF | GA | Diff | P | G | A | TP | SO | EG | GP1 | GP2 | GP3 | GP4 | SHF | SH1 | SP2 | SP3 | SP4 | SHA | SHB | Pim | Hit | PPA | PPG | PP% | PKA | PK GA | PK% | PK GF | W OF FO | T OF FO | OF FO% | W DF FO | T DF FO | DF FO% | W NT FO | T NT FO | NT FO% | PZ DF | PZ OF | PZ NT | PC DF | PC OF | PC NT |
Saison régulière | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
11 | 82 | 18 | 36 | 0 | 10 | 11 | 5 | 2 | 132 | 178 | -46 | 41 | 15 | 18 | 0 | 1 | 4 | 2 | 1 | 71 | 89 | -18 | 41 | 3 | 18 | 0 | 9 | 7 | 3 | 1 | 61 | 89 | -28 | 79 | 132 | 218 | 350 | 2 | 7 | 12 | 49 | 56 | 19 | 1434 | 309 | 503 | 577 | 68 | 2331 | 743 | 237 | 1218 | 82 | 32 | 39.02% | 106 | 35 | 66.98% | 3 | 530 | 1058 | 50.09% | 733 | 1429 | 51.29% | 423 | 841 | 50.30% | 1363 | 506 | 1659 | 860 | 1964 | 1019 |
11 | 82 | 18 | 36 | 0 | 10 | 11 | 5 | 2 | 132 | 178 | -46 | 41 | 15 | 18 | 0 | 1 | 4 | 2 | 1 | 71 | 89 | -18 | 41 | 3 | 18 | 0 | 9 | 7 | 3 | 1 | 61 | 89 | -28 | 79 | 132 | 218 | 350 | 2 | 7 | 12 | 49 | 56 | 19 | 1434 | 309 | 503 | 577 | 68 | 2331 | 743 | 237 | 1218 | 82 | 32 | 39.02% | 106 | 35 | 66.98% | 3 | 530 | 1058 | 50.09% | 733 | 1429 | 51.29% | 423 | 841 | 50.30% | 1363 | 506 | 1659 | 860 | 1964 | 1019 |
Total Saison régulière | 164 | 36 | 72 | 0 | 20 | 22 | 10 | 4 | 264 | 356 | -92 | 82 | 30 | 36 | 0 | 2 | 8 | 4 | 2 | 142 | 178 | -36 | 82 | 6 | 36 | 0 | 18 | 14 | 6 | 2 | 122 | 178 | -56 | 158 | 264 | 436 | 700 | 4 | 14 | 24 | 98 | 112 | 38 | 2868 | 618 | 1006 | 1154 | 136 | 4662 | 1486 | 474 | 2436 | 164 | 64 | 39.02% | 212 | 70 | 66.98% | 6 | 1060 | 2116 | 50.09% | 1466 | 2858 | 51.29% | 846 | 1682 | 50.30% | 2727 | 1013 | 3318 | 1721 | 3929 | 2038 |